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QCD at low energies

0.35 [

_ tdecay (NLO) == 1« Non-perturbative implementation of Field
[ low Q< cont. (N°LO)
0.3 | Heavy Quarkonia (NNLO) —+— - theory:
: HERA jets (NNLO) —+ : .
005 | e*e jets/shapes (NNLO+NLLA) ++ Feynmann path integral formalism.
U ete” Z0 pole fit (N3LO) e
[ pp/pp jets (NLO) =~
0.2 | pp top (NNLO) = +
: pp TEEC (NNLO) * Expectation values:
0.15 | -
: . T Asymptotic ;
| Confinement 2y SESA };reg dom n 1 _ A _ ;S
o | iy, freedom) Ay — [ DyDIDA, O, i, AleiSacr
| = (M) = 0.1180 + 0.0009 ]
1 10 100 1000
August 2023 Q [GeV]
S. Navas et al. (Particle Data Group). Phys. Rev. D, where
110(03001), 2024. 7 — / DlleZDA eiSQCD
— 0

(1



(O) / DYDYDA, O, ¢, AleScr

. . _1
Finite volume L°xT L>m;

Discrete spacetime b K AQC D

Imaginary time t — —it

U'u _ eigbAu (x)

©M. Illa

/ DYDEDU, O, §, U)eSen

MZ

1 ( {U} ) Importance sampling

ﬂ > (0) ~

methods
Net 1 \\2 »

)



How is scattering approached in LQCD?
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i.e. one can obtain the lowest energy state provided we see the large time exponential
fall-off of the correlation function (Euclidean time evolution suppresses excited states)
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Poor signal-to-noise for baryons

Effective mass plot for the proton
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) more severe degradation for A nucleons

G. Parisi, Phys. Rept. 103 (1984)

Expectation is that for A nucleons: G.P. Lepage, Boulder TASI (1989)
3m M.L. Wagman, M.]. Savage, Phys. Rev. D 96 (2017)
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Path integral formalism
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Signal to noise probl

Statistical noise

2.0
—— Exact 3
--®- MC + Bootstrap
1.5 A ] [
1.0 :
Golden window
L
0.5 - 1 e o
- ¥ W
: Y
0.0 - e ’
Excited states Y
~051 contamination - *
—1.0 A
71.5_
e —t , —
0 4 12 16 20 24 28 32

cm

nts = 100%
& Boostrap

v/ Varg
=~
1

KX RRRY

= k5
c
.20
2]
$ 39
]
°
=2
92
e
1 5
oo, .
.-'.“
PO Y Y Th --.-l""'.“.".
0 LA — T L | T T T T T T
0 4 8 12 16 20 24 28 32
t(lu.)




Variational approach
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Neural Quantum State as the ansatz

* Universal approximation theorem
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G. Cybenko. Mathematics of Control, Signals,
and Systems, 2(4):303-314, 1989.

* NN as the variational ansatz
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Variational Monte Carlo
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From a signal-to-noise to an optimization
problem
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© Generalized to any field theory

* QCD is a 3+1 field theory
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Summary & future outlook

VMC approach in the Hamiltonian perspective provides an alternative without a signal \
to noise problem.

One can study the stationary system and then its evolution (just one point in time).

The problem is now an optimization problem.

Can we obtain the low-lying energy spectrum of heavy nuclei?

(e.g. lead, uranium) with some systematic errors.

Drawbacks
o Generate samples efficiently.

o Some ansatz will suffer from strong autocorrelation.

o In high-dimensional theories, tune the NN ansatz (N,;,) so that it does not scale
rapidly with the volume.




