## Generalising Moments Analysis for Electroproduction

Dillon Leahy<sup>1</sup>

University of Glasgow

6th Workshop on Future Directions in Spectroscopy Analysis, December 2025



Linkedin: https://www.linkedin.com/in/dillonleahy/

<sup>&</sup>lt;sup>1</sup> Email: d.leahy.1@research.gla.ac.uk

## Outline



- Introduction
  - Motivation
  - The Electron Ion Collider
  - Electroproduction and Moments
- Concise Review of Past Material
  - Current Electroproduction Formalism
  - Moments Analysis for Photoproduction
  - Interlude: Naturality
- 3 Moments Analysis for Electroproduction
- 4 Outlook

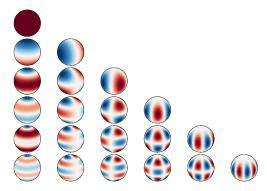


Figure: Example of some spherical harmonics. Red is +1 and blue is -1. Sourced from https://github.com/NVIDIA/torch-harmonics.

### Motivation



- Understand resonance production in electron–proton collisions at next-generation facilities.
- Extend moments analysis beyond photoproduction to electroproduction.
- Analyse the structure of exotic hadrons not just there existence i.e. XYZ states
- Compare and connect:
  - Schilling & Wolf (SDME formalism for vector mesons) [1],
  - Moments analysis in photoproduction [2],
  - A unified electroproduction framework.

#### Goal

• Generalise the current electroproduction formalism so that moments analysis can be performed at current colliders and the future EIC.

## The Electron Ion Collider (EIC)



- The EIC will be the next electron-proton collider and the first since HERA.
- Electron–proton collisions are much "cleaner" than proton–proton collisions.
- Provide much higher centre-of-mass / production energies than current LINAC experiments.
- So far, moments analysis has only been performed for photoproduction (e.g. GlueX).
- To perform moments at the EIC, the current electroproduction formalism must be generalised.

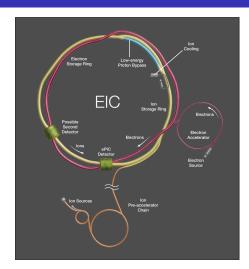


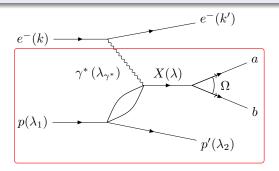
Figure: Schematic of the EIC. Taken from https://www.bnl.gov/eic/machine.php

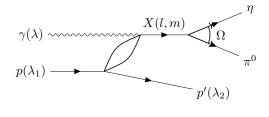
## Electroproduction vs Photoproduction



#### **Basic Definitions**

- **Electroproduction:** production of a resonance by a *virtual* photon emitted by a scattering electron.
- Photoproduction: production of a resonance by a real photon in a photon beam.





# Moments Analysis Overview (I)



#### What are Moments?

- Akin to Fourier analysis but decomposing in terms of moments H(LM) (Fourier coeffs) and spherical harmonics  $Y_I^M(\Omega)$  (cosine and sine)
- Coefficients then identify and quantify the structure of the resonance

## Why Moments?

- For a single resonance (e.g. spin-1  $\rho$ meson), moments are equivalent to SDMEs.
- For multiple resonances with different spins, moments encode
  - interference between resonances,
  - relative magnitudes of partial waves.

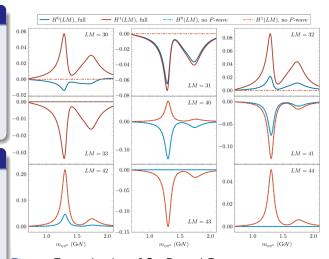


Figure: Example plot of S-, P- and D- wave contributions to the moments for a toy model of an  $\eta\pi^0$ decay. Taken from V Matthieu et al. [2]

FDSA25

# Moments Analysis Overview (II)



### Moments Analysis

 From standard field theory we can write out our 2-body decay intensity as

$$I(\Omega, \Phi) = \frac{\mathrm{d}\sigma}{\mathrm{d}t \,\mathrm{d}m_{ab} \,\mathrm{d}\Omega \,\mathrm{d}\Phi}$$

$$= \kappa \sum_{\substack{\lambda, \lambda' \\ \lambda_1, \lambda_2}} A_{\lambda; \lambda_1 \lambda_2}(\Omega) \,\rho_{\lambda \lambda'}^{\gamma^{(*)}}(\Phi) \,A_{\lambda'; \lambda_1 \lambda_2}^*(\Omega) \,.$$
(1)

 Can expand amplitudes out in a basis of spherical (2) harmonics:

$$A_{\lambda;\lambda_1\lambda_2}(\Omega) = \sum_{\ell m} T^{\ell}_{\lambda m;\lambda_1\lambda_2} Y^{m}_{\ell}(\Omega)$$
 (3)

 Intensity can also be expanded as a sum of different polarisation contributions

$$I(\Omega) = I^{0}(\Omega) + \mathbf{I}(\Omega)\mathbf{P}_{\gamma^{(*)}}(\Phi), \tag{4}$$

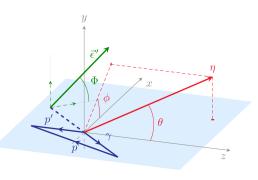


Figure: Diagram of the angles and vectors involved in the  $\eta\pi^0$  photoproduction. Taken from [2]

# Moments Analysis Overview (III)



### Intensity Expansion

• For a simple 2-body decay, the intensities and moments can be written as

$$I^{0}(\Omega) = \sum_{L,M} H^{0}(LM) Y_{L}^{M}(\Omega), \quad \mathbf{I}(\Omega) = -\sum_{L,M} \mathbf{H}(LM) Y_{L}^{M}(\Omega), \tag{5}$$

$$H^{0}(LM) = \sum_{\substack{ll'\\mm'}} \left(\frac{2l'+1}{2l+1}\right) C_{l'0L0}^{l0} C_{l'm'LM}^{lm} \rho_{mm'}^{0,ll'} \text{ and } \mathbf{H}(LM) = \sum_{\substack{ll'\\mm'}} \left(\frac{2l'+1}{2l+1}\right) C_{l'0L0}^{l0} C_{l'm'LM}^{lm} \rho_{mm'}^{ll'}$$
(6)

- ullet Bold values are just vectors containing all lpha>0 terms
- ullet This index lpha just corresponds to our different polarisation modes
- $\bullet$   $\alpha > 0$  terms are negative purely by convention so that  $H^1(00)$  is +ve for +ve naturality

# Current Electroproduction Formalism (Schilling & Wolf)



## Setup

- Based on the work by Schilling and Wolf [1].
- Considers decay and electroproduction of a vector meson.
- Simpler case due to strict decay rules.

#### Observables

- Angular distribution expressed in terms of 28 observables:
  - 26 Spin Density Matrix Elements (SDMEs)  $\rho^{\alpha}_{\lambda\lambda'}$ .
  - 2 cross sections:  $\sigma_T$  (transverse) and  $\sigma_L$  (longitudinal).

## Experimental Challenges

- Experimentally, we struggle to separate  $\alpha = 0$  and  $\alpha = 4$ .
- Angular components are non-orthogonal.
- Requires a variation of beam energies to separate the components.

# Current Electroproduction Formalism (Schilling & Wolf)



$$W^{\{0,4\}}(\theta,\phi) = \frac{3}{4\pi} \left[ \frac{1}{2} (3\rho_{00}^{\{0,4\}} - 1)\cos^2\theta + \frac{1}{2} (1 - \rho_{00}^{\{0,4\}}) - \sqrt{2}\operatorname{Re}(\rho_{10}^{\{0,4\}})\sin(2\theta)\cos\phi - \rho_{1-1}^{\{0,4\}}\sin^2\theta\cos(2\phi) \right], \tag{7}$$

$$W^{\{1,5,8\}}(\theta,\phi) = \frac{3}{4\pi} \left[ \rho_{11}^{\{1,5,8\}} \sin^2 \theta + \rho_{00}^{\{1,5,8\}} \cos^2 \theta - \sqrt{2} \operatorname{Re}(\rho_{10}^{\{1,5,8\}}) \sin(2\theta) \cos \phi - \rho_{1-1}^{\{1,5,8\}} \sin^2 \theta \cos(2\phi) \right], \tag{8}$$

$$W^{\{2,3,6,7\}}(\theta,\phi) = \frac{3}{4\pi} \left[ \sqrt{2} \operatorname{Im}(\rho_{10}^{\{2,3,6,7\}}) \sin(2\theta) \sin \phi - \operatorname{Im}(\rho_{1-1}^{\{2,3,6,7\}}) \sin^2 \theta \sin(2\phi) \right]. \tag{9}$$

# Why Move to Electroproduction



## Electroproduction vs Photoproduction

- Main difference is that we now have a virtual photons spin density matrix compared to a real one
- Gives us new cross section components going from just  $\sigma_T$  to  $\sigma_T$ ,  $\sigma_L$ ,  $\sigma_{TL}$  and  $\sigma_{LT}$
- Virtual photon gives us  $Q^2$  dependence  $\Rightarrow$  different distance scales can be probed and structure of states uncovered
- The polarisation part of our virtual photon can be easily calculated from scattering kinematics so can easily tune experiments

### Intensity In Terms of Polarisation Vector

Can also write out our intensity in terms of the virtual-photon's polarisation vector to get

$$I(\Omega, \Phi) = (1 + \epsilon + \delta)^{-1} \left[ I^0 - P_T I^1 \cos 2\Phi - P_T I^2 \sin 2\Phi + P_C P_0 I^3 + P_L I^4 + P_I I^5 \cos \Phi - P_I I^6 \sin \Phi + P_C I^7 (P_1 \cos \Phi + P_2 \sin \Phi) + P_C I^8 (P_1 \sin \Phi - P_2 \cos \Phi) \right]$$
(10)

## Practical Issues with SDMEs



#### Polarisation Variables

- Here  $P^i$  where i = 0, 1, 2, 3 are the virtual photon 4-polarisation vector components
- The other constants are the collected terms  $P_T = \epsilon$ ,  $P_C = \frac{2m}{Q}(1 \epsilon)$ ,  $P_L = \epsilon + \delta$ ,  $P_I = \sqrt{2\epsilon(1 + \epsilon + 2\delta)}$

#### Normalised Observables

- Common to quote SDMEs in terms of the 23 normalised observables  $r_{ik}^{\alpha}$ .
  - $R = \sigma_I / \sigma_T$
  - ullet  $\delta$  is an electron mass correction
  - $\bullet$   $\varepsilon$  is a polarisation parameter
- ullet Get photoproduction result back in the limit R 
  ightarrow 0
- This is standard in many current experiments and previous analyses (e.g. HERA [3], HERMES [4], COMPASS [5], etc).

$$r_{ik}^{04} = \frac{\rho_{ik}^0 + (\varepsilon + \delta)R \,\rho_{ik}^4}{1 + (\varepsilon + \delta)R}, \qquad (11)$$

$$r_{ik}^{\alpha} = \begin{cases} \frac{\rho_{ik}^{\alpha}}{1 + (\varepsilon + \delta)R}, & \alpha = 1 - 3, \\ \frac{\sqrt{R} \, \rho_{ik}^{\alpha}}{1 + (\varepsilon + \delta)R}, & \alpha = 5 - 8. \end{cases}$$
(12)

# Moments Analysis for Photoproduction (I)



#### Generalisation to Moments

- Generalisation of photoproduction in terms of moments by Vincent Mathieu et al.[2].
- Moments analysis applied to a toy model:

$$X \to \eta \pi^0$$
.

## Why $\eta^{(\prime)}\pi$ ?

- $\eta^{(\prime)}\pi$  decays are a golden channel for exotic mesons.
- Exotic behaviours appear in individual partial-wave resonances and their interferences.
- Allows spectroscopic identification of possible exotic states.

#### Note!

• As this is photoproduction we are only considering  $\alpha = 0, 1, 2, 3$ 



# Moments Analysis for Photoproduction (II)



#### From SDMEs to Partial Waves

- Replace SDMEs by their partial-wave expansion.
- Work in the reflectivity basis:
  - ullet Basis change where  $\pm$  reflectivity states correspond to  $\pm$  naturality exchanges.
  - Decouples the system into two independent reflectivities/naturalities.
- Using parity relations, one can decouple target(nucleon) initial and final helicities:
  - k = 0: no spin-flip,
  - k = 1: single spin-flip.

$$[I]_{m;0}^{\epsilon} = {}^{(\epsilon)}T'_{m;++} = T_{+1m;++} - \epsilon(-1)^{m}T_{-1-m;++}$$
(13)

$$[I]_{m;1}^{\epsilon} = {}^{(\epsilon)}T'_{m;+-} = T_{+1m;+-} - \epsilon (-1)^m T_{-1-m;+-}$$
(14)

# Interlude: Naturality



#### Definition

Naturality (natural parity) is defined as

$$\eta = P(-1)^J,$$

where:

- P is the parity,
- *J* is the total angular momentum of the meson.

## Examples

- Natural  $(\eta = +1)$  exchanges:
  - ullet pomerons, hos, vector mesons.
- Unnatural  $(\eta = -1)$  exchanges:
  - $\pi$ s, pseudoscalar mesons.

# Electroproduction SDMEs: Strategy



#### Aim

- Generalise the previously shown formalism.
- Express Schilling & Wolf SDMEs in terms of our reflectivity basis partial waves.

#### Procedure

- I followed the derivation from Schilling & Wolf.
  - Derive the virutal photon SDMEs from the leptonic part of the matrix element
  - Use these in the von Neumann equation to obtain the vector meson SDMEs.
  - ullet Decompose the vector meson SDMEs in terms of our 9 lpha states.

#### Issue!

• Electroproduction introduces helicity-0 states that cannot be transformed by the previous reflectivity transform.

## Electroproduction SDMEs: Formulae



### Von Neumann Equation

$$\rho_{mm'}^{\alpha,ll'} = \sum_{\lambda,\lambda_1,\lambda_2} T_{\lambda m,\lambda_1 \lambda_2}^l \rho_{\lambda \lambda'}^{\alpha} T_{\lambda' m',\lambda_1 \lambda_2}^{l'*}, \tag{15}$$

#### Vector Meson SDMEs

$$\begin{split} \rho_{mm'}^{0,ll'} &= \frac{\kappa}{2} \sum_{\lambda = \pm 1} T_{\lambda m, \lambda_1 \lambda_2}^{l} T_{\lambda m, \lambda_1 \lambda_2}^{l*} \\ \rho_{mm'}^{1,ll'} &= \frac{\kappa}{2} \sum_{\lambda = \pm 1} T_{-\lambda m, \lambda_1 \lambda_2}^{l} T_{\lambda m, \lambda_1 \lambda_2}^{l*} \\ \rho_{mm'}^{1,ll'} &= \frac{\kappa}{2} \sum_{\lambda = \pm 1} T_{-\lambda m, \lambda_1 \lambda_2}^{l} T_{\lambda m, \lambda_1 \lambda_2}^{l*} \\ \rho_{mm'}^{0,ll'} &= \frac{i\kappa}{2} \sum_{\lambda = \pm 1} T_{-\lambda m, \lambda_1 \lambda_2}^{l} T_{\lambda m, \lambda_1 \lambda_2}^{l*} \\ \rho_{mm'}^{0,ll'} &= \frac{i\kappa}{2} \sum_{\lambda = \pm 1} \left( T_{0m, \lambda_1 \lambda_2}^{l} T_{\lambda m, \lambda_1 \lambda_2}^{l*} T_{\lambda m, \lambda_1 \lambda_2}^{l*} T_{0m, \lambda_1 \lambda_2}^{l*} \right) \\ \rho_{mm'}^{2,ll'} &= \frac{i\kappa}{2} \sum_{\lambda = \pm 1} \lambda T_{-\lambda m, \lambda_1 \lambda_2}^{l} T_{\lambda m, \lambda_1 \lambda_2}^{l*} \\ \rho_{mm'}^{2,ll'} &= \frac{\kappa}{2} \sum_{\lambda = \pm 1} \lambda T_{\lambda m, \lambda_1 \lambda_2}^{l} T_{\lambda m, \lambda_1 \lambda_2}^{l*} \\ \rho_{mm'}^{3,ll'} &= \frac{\kappa}{2} \sum_{\lambda = \pm 1} \lambda T_{\lambda m, \lambda_1 \lambda_2}^{l} T_{\lambda m, \lambda_1 \lambda_2}^{l*} \\ \rho_{mm'}^{8,ll'} &= \frac{i\kappa}{2\sqrt{2}} \sum_{\lambda = \pm 1} \lambda \left( T_{\lambda m, \lambda_1 \lambda_2}^{l} T_{\lambda m, \lambda_1 \lambda_2}^{l*} T_{\lambda m, \lambda_1 \lambda_2}^{l*} \right) \\ \rho_{mm'}^{8,ll'} &= \frac{i\kappa}{2\sqrt{2}} \sum_{\lambda = \pm 1} \lambda \left( T_{\lambda m, \lambda_1 \lambda_2}^{l} T_{0m, \lambda_1 \lambda_2}^{l*} T_{\lambda m, \lambda_1 \lambda_2}^{l*} \right) \\ \rho_{mm'}^{8,ll'} &= \frac{i\kappa}{2\sqrt{2}} \sum_{\lambda = \pm 1} \lambda \left( T_{\lambda m, \lambda_1 \lambda_2}^{l} T_{0m, \lambda_1 \lambda_2}^{l*} T_{\lambda m, \lambda_1 \lambda_2}^{l*} T_{\lambda m, \lambda_1 \lambda_2}^{l*} \right) \\ \rho_{mm'}^{8,ll'} &= \frac{i\kappa}{2\sqrt{2}} \sum_{\lambda = \pm 1} \lambda \left( T_{\lambda m, \lambda_1 \lambda_2}^{l} T_{0m, \lambda_1 \lambda_2}^{l*} T_{0m, \lambda_1 \lambda_2}^{l*} T_{0m, \lambda_1 \lambda_2}^{l*} \right) \\ \rho_{mm'}^{8,ll'} &= \frac{i\kappa}{2\sqrt{2}} \sum_{\lambda = \pm 1} \lambda \left( T_{\lambda m, \lambda_1 \lambda_2}^{l} T_{0m, \lambda_1 \lambda_2}^{l*} T_{0m, \lambda_1 \lambda_2}^{l*} T_{0m, \lambda_1 \lambda_2}^{l*} \right) \\ \rho_{mm'}^{8,ll'} &= \frac{i\kappa}{2\sqrt{2}} \sum_{\lambda = \pm 1} \lambda \left( T_{\lambda m, \lambda_1 \lambda_2}^{l} T_{0m, \lambda_1 \lambda_2}^{l*} T_{0m, \lambda_1 \lambda_2}^{l*} T_{0m, \lambda_1 \lambda_2}^{l*} \right) \\ \rho_{mm'}^{8,ll'} &= \frac{i\kappa}{2\sqrt{2}} \sum_{\lambda = \pm 1} \lambda \left( T_{\lambda m, \lambda_1 \lambda_2}^{l} T_{0m, \lambda_1 \lambda_2}^{l*} T_{0m, \lambda_1 \lambda_2}^{l*} \right) \\ \rho_{mm'}^{8,ll'} &= \frac{i\kappa}{2\sqrt{2}} \sum_{\lambda = \pm 1} \lambda \left( T_{\lambda m, \lambda_1 \lambda_2}^{l} T_{0m, \lambda_1 \lambda_2}^{l*} T_{0m, \lambda_1 \lambda_2}^{l*} \right) \\ \rho_{mm'}^{8,ll'} &= \frac{i\kappa}{2\sqrt{2}} \sum_{\lambda = \pm 1} \lambda \left( T_{\lambda m, \lambda_1 \lambda_2}^{l} T_{0m, \lambda_1 \lambda_2}^{l*} T_{0m, \lambda_1 \lambda_2}^{l*} \right) \\ \rho_{mm'}^{8,ll'} &= \frac{i\kappa}{2\sqrt{2}} \sum_{\lambda = \pm 1} \lambda \left( T_{\lambda m, \lambda_1 \lambda_2}^{l} T_{0m, \lambda_1 \lambda_2}^{l*} T_{0m, \lambda_1 \lambda_2}^{l*} \right) \\ \rho_{mm'}^{8,ll'} &= \frac{i\kappa}{2\sqrt{2}} \sum_{\lambda = \pm 1} \lambda \left( T$$

# The Ansatz: New Reflectivity with T/L



## Extended Reflectivity Basis

ullet Make an ansatz: define a new reflectivity basis as before, but introduce an additional index T/L

$$[I]_{Tm;k}^{\epsilon} = {}^{(\epsilon)}T_{Tm;++/+-} = T_{+1m;++/+-} - \epsilon (-1)^m T_{-1-m;++/+-}$$
(16)

$$[I]_{Lm;k}^{\epsilon} = {}^{(\epsilon)}T_{Lm;++/+-} = T_{0m;++/+-} - \epsilon (-1)^m T_{0-m;++/+-}.$$
(17)

- corresponding to transverse and longitudinal components of the partial wave.
- Each partial wave now has transverse and longitudinal pieces in the reflectivity basis.

#### k-basis reminder

• Here our k-basis again just refers to the fact we can reduce our nucelon/target spins from  $\lambda_1\lambda_2=(++), (--), (+-)$  and (-+) to k=0,1; as (++/--) and (+-/-+) states are related through parity

## Consistency Check

- $\bullet$  To cast this into the k-basis, we first check the high-energy parity relation.
- Then we compare the number of degrees of freedom (d.o.f.) with the original system.

## Parity Relations and the k-Basis



#### Proof

$$\hat{\mathcal{P}}^{(\epsilon)} T^{I}_{Lm;\lambda_{1}\lambda_{2}} = {}^{(\epsilon)} T_{L-m;-\lambda_{1}-\lambda_{2}} = \frac{1}{2} \left[ T^{I}_{0-m;-\lambda_{1}-\lambda_{2}} - \epsilon(-1)^{m} T^{I}_{0m;-\lambda_{1}-\lambda_{2}} \right]$$

$$= \frac{1}{2} \left[ (-1)^{m+\lambda_{1}-\lambda_{2}} T^{I}_{0m;\lambda_{1}\lambda_{2}} - \epsilon(-1)^{\lambda_{1}-\lambda_{2}} (-1)^{2m} T^{I}_{0-m;\lambda_{1}\lambda_{2}} \right]$$

$$\implies \text{under exchange m } \leftrightarrow -\text{m}$$

$${}^{(\epsilon)} T_{Lm;-\lambda_{1}-\lambda_{2}} = -\epsilon(-1)^{\lambda_{1}-\lambda_{2}} {}^{(\epsilon)} T_{Lm;\lambda_{1}\lambda_{2}}.$$

## Casting L into k-basis

- Always have  $^{(\epsilon)}T_{Lm;\lambda_1\lambda_2}=\pm^{(\epsilon)}T_{Lm;-\lambda_1-\lambda_2}$
- k-basis  $[I]_{I,m:k}^{\epsilon}$  is valid also for the longitudinal part

# Checking the Degrees of Freedom



### Reflectivity Basis

• For our partial waves  $[I]_{Tm;k}^{\epsilon}$  and  $[I]_{Lm;k}^{\epsilon}$  the total d.o.f. is

$$\underbrace{\frac{2 \times 2(2l+1)}{T}}_{T} + \underbrace{2 \times \frac{2(2l+1)}{2}}_{I} = 6(2l+1), \tag{18}$$

where the longitudinal part is symmetric under  $-m \Leftrightarrow m:[I]_{Lm;k}^{\epsilon} = -\epsilon (-1)^m [I]_{Lm;k}^{\epsilon}$ .

• For m = 0, only an unnatural contribution remains.

#### Standard Basis

• In the standard basis  $T^{I}_{\lambda m; \lambda_1 \lambda_2}$  (and considering parity):

$$\frac{3 \times 2^2(2l+1)}{2} = 6(2l+1),\tag{19}$$

## Expanding the SDMEs



$$\begin{split} &\rho_{mm'}^{0,ll'} = \kappa \sum_{k} [l]_{T-m;k}^{\epsilon} [l']_{T-m';k}^{\epsilon*} + (-1)^{m'-m} [l]_{Tm;k}^{\epsilon} [l']_{Tm';k}^{\epsilon*} \\ &\rho_{mm'}^{1,ll'} = -\epsilon \kappa \sum_{k} (-1)^{m} [l]_{T-m;k}^{\epsilon} [l']_{Tm';k}^{\epsilon*} + (-1)^{m'} [l]_{Tm;k}^{\epsilon} [l']_{T-m';k}^{\epsilon*} \\ &\rho_{mm'}^{2,ll'} = -i\epsilon \kappa \sum_{k} (-1)^{m} [l]_{T-m;k}^{\epsilon} [l']_{Tm';k}^{\epsilon*} - (-1)^{m'} [l]_{Tm;k}^{\epsilon} [l']_{T-m';k}^{\epsilon*} \\ &\rho_{mm'}^{3,ll'} = \kappa \sum_{k} [l]_{T-m;k}^{\epsilon} [l']_{T-m';k}^{\epsilon*} - (-1)^{m'-m} [l]_{Tm;k}^{\epsilon} [l']_{Tm';k}^{\epsilon*} \\ &\rho_{mm'}^{4,ll'} = 2\kappa [l]_{Lm}^{\epsilon} [l']_{Lm'}^{\epsilon*} \\ &\rho_{mm'}^{5,ll'} = -\frac{\kappa}{\sqrt{2}} \epsilon \sum_{k} (-1)^{m} \left( [l]_{Lm}^{\epsilon} [l']_{Tm'}^{\epsilon*} - [l]_{Tm}^{\epsilon} [l']_{Lm'}^{\epsilon*} \right) + (-1)^{m'} \left( [l]_{Lm}^{\epsilon*} [l']_{Tm'}^{\epsilon} - [l]_{Tm}^{\epsilon*} [l']_{Lm'}^{\epsilon} \right) \\ &\rho_{mm'}^{6,ll'} = \frac{i\kappa}{\sqrt{2}} \sum_{k} [l]_{Lm}^{\epsilon} [l']_{Tm'}^{\epsilon*} - [l]_{Tm}^{\epsilon} [l']_{Lm'}^{\epsilon*} - \epsilon \left( (-1)^{m'} [l]_{Lm}^{\epsilon*} [l']_{Tm'}^{\epsilon} - (-1)^{m} [l]_{Tm}^{\epsilon*} [l']_{Lm'}^{\epsilon} \right) \\ &\rho_{mm'}^{7,ll'} = -\frac{\kappa}{\sqrt{2}} \epsilon \sum_{k} (-1)^{m} \left( [l]_{Lm}^{\epsilon} [l']_{Tm'}^{\epsilon*} + [l]_{Tm}^{\epsilon} [l']_{Lm'}^{\epsilon*} \right) + (-1)^{m'} \left( [l]_{Lm}^{\epsilon*} [l']_{Tm'}^{\epsilon*} + [l]_{Tm}^{\epsilon*} [l']_{Lm'}^{\epsilon} \right) \\ &\rho_{mm'}^{8,ll'} = \frac{i\kappa}{\sqrt{2}} \sum_{k} [l]_{Lm}^{\epsilon} [l']_{Tm'}^{\epsilon*} - [l]_{Tm}^{\epsilon} [l']_{Lm'}^{\epsilon*} + \epsilon \left( (-1)^{m'} [l]_{Lm}^{\epsilon*} [l']_{Tm'}^{\epsilon} - (-1)^{m} [l]_{Tm}^{\epsilon*} [l']_{Lm'}^{\epsilon} \right). \end{aligned}$$

# SDMEs in the New Reflectivity Basis



### General Expression

- Expanding the SDMEs in terms of the new reflectivity basis yields a **completely general** formula.
- One can substitute any I (not restricted to vector mesons).
- Different choices of / produce different intensities and moment contributions.

## Advantages

- Clean separation of transverse/longitudinal and natural/unnatural contributions.
- Direct bridge between SDMEs and partial-wave moments.

## Moments and Intensities in Electroproduction



#### **Definitions**

- Definitions of intensities and moments were given previously in Eqs(5)(6).
- Difference between photo- and electroproduction are the inclusion of coefficients  $\alpha = 4, 5, 6, 7, 8$ .

#### **Derivation Sketch**

- Multiply SDMEs by Clebsch-Gordan coefficients.
- Multiply moments by corresponding angular parts (Wigner D-functions).
- Combine and simplify using parity and trace relations.
- Expand SDMEs in terms of partial waves in the new reflectivity basis.
- Express moments in terms of our partial waves
- For complicated amounts of possible *Is* use a symbolic solver (e.g. Mathematica) to calculate

# Example for S- and P-Waves (Intensities)



$$\begin{split} I^0 &= \frac{1}{4\pi} \left[ 3 \left( \rho_{00}^{0,11} - \rho_{1-1}^{0,11} - \rho_{11}^{0,11} \right) \cos^2(\theta) + \left( 3 \rho_{00}^{0,01} + \rho_{00}^{0,10} \right) \cos(\theta) + \rho_{00}^{0,00} + 3 \left( \rho_{1-1}^{0,11} + \rho_{11}^{0,11} \right) \right] \\ I^1 &= \frac{1}{4\pi} \left[ 3 \left( -\rho_{00}^{1,11} + \rho_{1-1}^{1,11} + \rho_{11}^{1,11} \right) \cos^2(\theta) - \left( 3 \rho_{00}^{1,01} + \rho_{00}^{1,10} \right) \cos(\theta) - \rho_{00}^{1,00} - 3 \left( \rho_{1-1}^{1,11} + \rho_{11}^{1,11} \right) \right] \\ I^2 &= \frac{1}{4\pi} \left[ -3 \left( \rho_{00}^{2,11} - \rho_{01}^{2,11} + 2 \rho_{10}^{2,11} \right) \cos^2(\theta) - \left( 3 \rho_{00}^{2,01} + \rho_{00}^{2,10} + 2 \rho_{10}^{2,10} \right) \cos(\theta) - \rho_{00}^{2,00} - 3 \rho_{01}^{2,11} \right] \\ I^3 &= \frac{1}{4\pi} \left[ -3 \left( \rho_{00}^{3,11} - \rho_{01}^{3,11} + 2 \rho_{10}^{3,11} \right) \cos^2(\theta) - \left( 3 \rho_{00}^{3,01} + \rho_{00}^{3,10} + 2 \rho_{10}^{3,10} \right) \cos(\theta) - \rho_{00}^{3,00} - 3 \rho_{01}^{3,11} \right] \\ I^4 &= \frac{1}{4\pi} \left[ 3 \left( -\rho_{00}^{4,11} + \rho_{1-1}^{4,11} + \rho_{11}^{4,11} \right) \cos^2(\theta) - \left( 3 \rho_{00}^{4,01} + \rho_{00}^{4,10} \right) \cos(\theta) - \rho_{00}^{4,00} - 3 \left( \rho_{1-1}^{4,11} + \rho_{11}^{4,11} \right) \right] \\ I^5 &= \frac{1}{4\pi} \left[ -3 \left( \rho_{00}^{5,11} - \rho_{01}^{5,11} + 2 \rho_{10}^{5,11} \right) \cos^2(\theta) - \left( 3 \rho_{00}^{5,01} + \rho_{00}^{5,01} + 2 \rho_{10}^{5,10} \right) \cos(\theta) - \rho_{00}^{5,00} - 3 \rho_{01}^{5,11} \right] \\ I^6 &= \frac{1}{4\pi} \left[ -3 \left( \rho_{00}^{6,11} - \rho_{01}^{6,11} + 2 \rho_{10}^{6,11} \right) \cos^2(\theta) - \left( 3 \rho_{00}^{6,01} + \rho_{00}^{6,10} + 2 \rho_{10}^{6,10} \right) \cos(\theta) - \rho_{00}^{6,00} - 3 \rho_{01}^{6,11} \right] \\ I^7 &= \frac{1}{4\pi} \left[ 3 \left( -\rho_{00}^{7,11} + \rho_{1-1}^{7,11} + \rho_{11}^{7,11} \right) \cos^2(\theta) - \left( 3 \rho_{00}^{6,01} + \rho_{00}^{6,10} + 2 \rho_{10}^{6,10} \right) \cos(\theta) - \rho_{00}^{7,00} - 3 \left( \rho_{1-1}^{7,11} + \rho_{11}^{7,11} \right) \right] \\ I^8 &= \frac{1}{4\pi} \left[ 3 \left( -\rho_{00}^{7,11} + \rho_{1-1}^{7,11} + \rho_{11}^{7,11} \right) \cos^2(\theta) - \left( 3 \rho_{00}^{8,01} + \rho_{00}^{8,10} \right) \cos(\theta) - \rho_{00}^{8,00} - 3 \left( \rho_{1-1}^{7,11} + \rho_{11}^{7,11} \right) \right] \\ I^8 &= \frac{1}{4\pi} \left[ 3 \left( -\rho_{00}^{8,11} + \rho_{1-1}^{8,11} + \rho_{11}^{8,11} \right) \cos^2(\theta) - \left( 3 \rho_{00}^{8,01} + \rho_{00}^{8,10} \right) \cos(\theta) - \rho_{00}^{8,00} - 3 \left( \rho_{00}^{7,11} + \rho_{11}^{7,11} \right) \right] \\ I^8 &= \frac{1}{4\pi} \left[ 3 \left( -\rho_{00}^{8,11} + \rho_{1-1}^{8,11} + \rho_{11}^{8,11} \right) \cos^2(\theta) - \left( 3 \rho_{00}^{8,01} + \rho_{00}^{8,10} \right) \cos(\theta) - \rho_{00}^{8,00} - 3 \left( \rho_$$

# Example for S- and P-Waves (SDMEs)



$$\begin{split} \rho_{000}^{0,00} &= 2 \, |S_{T,0}|^2 \\ \rho_{0-1}^{0,01} &= S_{T,0} P_{T,-1}{}^* - S_{T,0} P_{T,1}{}^* \\ \rho_{001}^{0,01} &= 2 S_{T,0} P_{T,0}{}^* \\ \rho_{001}^{0,01} &= S_{T,0} P_{T,1}{}^* - S_{T,0} P_{T,-1}{}^* \\ \rho_{010}^{0,10} &= P_{T,-1} S_{T,0}{}^* - P_{T,1} S_{T,0}{}^* \\ \rho_{000}^{0,10} &= 2 P_{T,0} S_{T,0}{}^* \\ \rho_{101}^{0,10} &= P_{T,1} S_{T,0}{}^* - P_{T,-1} S_{T,0}{}^* \\ \rho_{111}^{0,11} &= |P_{T,-1}|^2 + |P_{T,1}|^2 \\ \rho_{-111}^{0,11} &= 2 \Re \left( P_{T,1} P_{T,-1}{}^* \right) \\ \rho_{011}^{0,11} &= 2 \Re \left( P_{T,1} P_{T,-1}{}^* \right) \\ \rho_{011}^{0,11} &= P_{T,0} P_{T,-1}{}^* - P_{T,0} P_{T,1}{}^* \\ \rho_{011}^{0,11} &= 2 P_{T,0} P_{T,1}{}^* - P_{T,0} P_{T,-1}{}^* \\ \rho_{011}^{0,11} &= P_{T,0} P_{T,1}{}^* - P_{T,0} P_{T,-1}{}^* \\ \rho_{011}^{0,11} &= P_{T,1} P_{T,0}{}^* - P_{T,-1} P_{T,0}{}^* \\ \rho_{111}^{0,11} &= P_{T,1} P_{T,0}{}^* - P_{T,-1} P_{T,0}{}^* \\ \rho_{111}^{0,00} &= -2 \left| S_{T,0} \right|^2 \\ \rho_{001}^{0,01} &= S_{T,0} P_{T,1}{}^* - S_{T,0} P_{T,-1}{}^* \\ \rho_{101}^{0,01} &= -2 S_{T,0} P_{T,0}{}^* \\ \rho_{101}^{0,01} &= -2 S_{T,0} P_{T,0}{}^* \\ \rho_{101}^{0,01} &= S_{T,0} P_{T,-1}{}^* - S_{T,0} P_{T,1}{}^* \end{split}$$

$$\begin{split} \rho_{-10}^{1,11} &= P_{T,1}P_{T,0}^* - P_{T,-1}P_{T,0}^* \\ \rho_{-11}^{1,11} &= |P_{T,-1}|^2 + |P_{T,1}|^2 \\ \rho_{0-1}^{1,11} &= P_{T,0}P_{T,1}^* - P_{T,0}P_{T,-1}^* \\ \rho_{00}^{1,11} &= -2|P_{T,0}|^2 \\ \rho_{01}^{1,11} &= P_{T,0}P_{T,-1}^* - P_{T,0}P_{T,1}^* \\ \rho_{11}^{1,11} &= |P_{T,-1}|^2 + |P_{T,1}|^2 \\ \rho_{10}^{1,11} &= P_{T,-1}P_{T,0}^* - P_{T,1}P_{T,0}^* \\ \rho_{10}^{1,11} &= 2\Re\left(P_{T,1}P_{T,-1}^*\right) \\ \rho_{00}^{2,00} &= 0 \\ \rho_{0-1}^{2,01} &= -i\left(S_{T,0}P_{T,-1}^* + S_{T,0}P_{T,1}^*\right) \\ \rho_{00}^{2,01} &= -i\left(S_{T,0}P_{T,-1}^* + S_{T,0}P_{T,1}^*\right) \\ \rho_{00}^{2,01} &= -i\left(P_{T,-1}\left(-S_{T,0}^*\right) - P_{T,1}S_{T,0}\right) \\ \rho_{00}^{2,01} &= -i\left(P_{T,-1}\left(-S_{T,0}^*\right) - P_{T,1}S_{T,0}\right) \\ \rho_{00}^{2,10} &= -i\left(P_{T,-1}P_{T,1}^*\right) \\ \rho_{-11}^{2,11} &= 2\Re\left(P_{T,-1}P_{T,1}^*\right) \\ \rho_{-11}^{2,11} &= -i\left(P_{T,-1}\left(-P_{T,0}^*\right) - P_{T,1}P_{T,0}\right) \\ \rho_{-11}^{2,11} &= -i\left(P_{T,-1}\left(-P_{T,0}^*\right) - P_{T,1}P_{T,1}\right) \\ \rho_{-11}^{2,11} &= -i\left(P_{T,-1}\left(-P_{T,0}\right) - P_{T,1}P_{T,1}\right) \\ \rho_{-11}^{2,11} &= -i\left(P_{T,-1}\left(-P_{T,0}\right) - P_{T,1}P_{T,1}\right) \\ \rho_{-11}^{2,11} &= -i\left(P_{T,-1}\left(-P_{T,-1}\right) -$$

$$\begin{split} \rho_{-11}^{5,11} &= -\frac{1}{\sqrt{2}} \left( 2i\Im \left( P_{T,1} P_{L,-1}^* \right) - P_{L,1} P_{T,-1}^* + P_{T,-1} P_{L,1}^* \right) \\ \rho_{0-1}^{5,11} &= -\frac{1}{\sqrt{2}} \left( 2\Re \left( P_{T,-1} P_{L,0}^* \right) + P_{L,-1} \left( - P_{T,0}^* \right) - P_{T,0} P_{L,-1}^* \right) \\ \rho_{00}^{5,11} &= -\frac{1}{\sqrt{2}} \left( 2\Re \left( P_{T,1} P_{L,0}^* \right) + P_{L,1} \left( - P_{T,0}^* \right) - P_{T,0} P_{L,1}^* \right) \\ \rho_{01}^{5,11} &= -\frac{1}{\sqrt{2}} \left( 2\Re \left( P_{T,1} P_{L,0}^* \right) + P_{L,1} \left( - P_{T,0}^* \right) - P_{T,0} P_{L,1}^* \right) \\ \rho_{1-1}^{5,11} &= -\frac{1}{\sqrt{2}} \left( 2\Re \left( P_{T,1} P_{L,0}^* \right) + P_{L,1} \left( - P_{T,0}^* \right) - P_{T,0} P_{L,1}^* \right) \\ \rho_{10}^{5,11} &= -\frac{1}{\sqrt{2}} \left( 2\Re \left( P_{T,1} P_{L,0}^* \right) + P_{L,1} \left( - P_{T,0}^* \right) - P_{T,0} P_{L,1}^* \right) \\ \rho_{00}^{6,00} &= 0 \\ \varepsilon &= \rho_{00}^{6,01} &= \frac{i}{\sqrt{2}} \left( S_{L,-1} P_{T,0}^* + S_{L,0} P_{T,-1}^* - S_{T,-1} P_{L,0}^* - S_{T,0} P_{L,-1}^* \right) \\ \rho_{00}^{6,01} &= 0 \\ \rho_{01}^{6,01} &= \frac{i}{\sqrt{2}} \left( S_{L,0} P_{T,1}^* + S_{L,1} P_{T,0}^* - S_{T,0} P_{L,1}^* - S_{T,1} P_{L,0}^* \right) \\ \rho_{00}^{6,10} &= 0 \\ \rho_{01}^{6,10} &= \frac{i}{\sqrt{2}} \left( P_{L,-1} S_{T,0}^* - P_{L,0} S_{T,-1}^* - P_{T,-1} S_{L,0}^* + P_{T,0} S_{L,-1}^* \right) \\ \rho_{00}^{6,10} &= 0 \\ \end{pmatrix}$$

### Future Work



### Validation and Toy Models

- ullet Test the formalism using dedicated toy models and input some form-factor  $Q^2$  dependence.
- Compare with existing photoproduction results in real/quasi-real photon limit.

### Applications to Data

- Investigate current reaction data at polarised electron-beam experiments (e.g. JLab / CLAS).
- At the EIC, exploit access to a polarised proton beam by extending the treatment to polarised targets (nucleons),
- Extend from 2-body to 3-body decays for richer spectroscopy.

# Summary & Questions



- Reviewed the Schilling & Wolf SDME formalism for electroproduction.
- Connected moments analysis in photoproduction to a generalised electroproduction framework.
- Introduced an extended reflectivity basis with transverse/longitudinal components and checked its consistency.
- Laid groundwork to apply moments analysis to electroproduction to the EIC and previous exlectroproduction experiments.

Any Questions?

## References I



- [1] K. Schilling and G. Wolf. "Analysis of vector meson production by polarized photons in terms of spin density matrix elements". In: *Nuclear Physics B* 61 (1973), pp. 381–413. DOI: 10.1016/0550-3213(73)90371-4.
- [2] V. Mathieu et al. "Moments of angular distribution and beam asymmetries in photoproduction at GlueX". In: *Physical Review D* 100.5 (2019), p. 054017. DOI: 10.1103/PhysRevD.100.054017.
- [3] J. Breitweg et al. "Measurement of the spin density matrix elements in exclusive electroproduction of rho0 mesons at HERA". In: *Eur. Phys. J. C* 12 (2000), pp. 393–410. DOI: 10.1007/s100529900246. arXiv: hep-ex/9908026.
- [4] W. Augustyniak. "Exclusive electroproduction of vector mesons in lepton nucleon scattering at the HERMES experiment". In: Nucl. Phys. B Proc. Suppl. 245 (2013). Ed. by Stanislav Dubnička, Anna Zuzana Dubničková, and Erik Bartoš, pp. 207–214. DOI: 10.1016/j.nuclphysbps.2013.10.041.

## References II



[5] G. D. Alexeev et al. "Spin density matrix elements in exclusive  $\rho^0$  meson muoproduction". In: Eur. Phys. J. C 83.10 (2023), p. 924. DOI: 10.1140/epjc/s10052-023-11359-4. arXiv: 2210.16932 [hep-ex].

## Backup Slides



- Use these for additional derivation details, intermediate steps, or checks.
- Add specific algebra for:
  - parity relations for Transverse reflectivity,
  - k-basis example, can describe coordinates in terms of (1,0),(-1,0) (0,-1) and (0,-1) but ofcourse these 4 are equivalently just (1,0) and (0,1) or (-1,0) and (0,-1) as they are -ves of each other
  - Screenshot of mathematica and outputs?,
  - Maybe have matrix and decomposition?

## SDME Basis Matrices and Coefficient Vector



## Full Spin Density Matrix

$$\begin{pmatrix} 1 - \sqrt{1 - \varepsilon^2} \, P \cos \alpha_2 & e^{-i\Phi} \Big( \sqrt{\varepsilon(1 + \varepsilon + 2\delta)} - \sqrt{\varepsilon(1 - \varepsilon)} \, P \cos \alpha_2 \Big) & -\varepsilon e^{-2i\Phi} \\ e^{i\Phi} \Big( \sqrt{\varepsilon(1 + \varepsilon + 2\delta)} - \sqrt{\varepsilon(1 - \varepsilon)} \, P \cos \alpha_2 \Big) & 2(\varepsilon + \delta) & -e^{-i\Phi} \Big( \sqrt{\varepsilon(1 + \varepsilon + 2\delta)} + \sqrt{\varepsilon(1 - \varepsilon)} \, P \cos \alpha_2 \Big) \\ -\varepsilon e^{2i\Phi} & -e^{i\Phi} \Big( \sqrt{\varepsilon(1 + \varepsilon + 2\delta)} + \sqrt{\varepsilon(1 - \varepsilon)} \, P \cos \alpha_2 \Big) & 1 + \sqrt{1 - \varepsilon^2} \, P \cos \alpha_2 \end{pmatrix}$$

## Why can we decompose this?

- As our spin density matrix is a hermitian matrix it can always be decomposed into  $N^2$  basis matrices (N is the dimension of the matrix)
- General complex matrices form a vector space over  $\mathbb R$  of dimension  $2N^2$
- ullet Hermitian matrices are a subspace of this with half the d.o.f so they form a vector space of  $N^2$

## SDME Basis Matrices and Coefficient Vector



#### $\gamma^*$ Vector of Coefficients

$$\Pi = \{ 1, -\varepsilon \cos(2\Phi), -\varepsilon \sin(2\Phi), \frac{2m}{Q}(1-\varepsilon)P_0, \varepsilon + \delta, \sqrt{2\varepsilon(1+\varepsilon+2\delta)}\cos\Phi, \sqrt{2\varepsilon(1+\varepsilon+2\delta)}\sin\Phi, \frac{2m}{Q}(1-\varepsilon)(P_1\cos\Phi + P_2\sin\Phi), \frac{2m}{Q}(1-\varepsilon)(P_1\sin\Phi - P_2\cos\Phi) \}$$

#### Vector of Vector Meson SDME Coefficients

$$\begin{split} \Pi = & \frac{1}{1 + (\varepsilon + \delta)R} \{\, 1, \,\, -\varepsilon \cos(2\Phi), \,\, -\varepsilon \sin(2\Phi), \,\, \frac{2m}{Q} (1 - \varepsilon) P_0, \,\, \varepsilon + \delta, \,\, \sqrt{2\varepsilon(1 + \varepsilon + 2\delta)} \cos\Phi, \\ & \sqrt{2\varepsilon(1 + \varepsilon + 2\delta)} \sin\Phi, \,\, \frac{2m}{Q} (1 - \varepsilon) (P_1 \cos\Phi + P_2 \sin\Phi), \,\, \frac{2m}{Q} (1 - \varepsilon) (P_1 \sin\Phi - P_2 \cos\Phi) \,\} \end{split}$$

## SDME Basis Matrices and Coefficient Vector



### **Basis Matrices**

$$\Sigma^0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Sigma^1 = egin{pmatrix} 0 & 0 & 1 \ 0 & 0 & 0 \ 1 & 0 & 0 \end{pmatrix},$$

$$\Sigma^0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad \Sigma^1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \qquad \Sigma^2 = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix},$$

$$\Sigma^3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$\Sigma^4 = 2 egin{pmatrix} 0 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix},$$

$$\Sigma^3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \qquad \Sigma^4 = 2 \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \Sigma^5 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix},$$

$$\Sigma^{6} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & i \\ 0 & -i & 0 \end{pmatrix}, \quad \Sigma^{7} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \Sigma^{8} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$

# Mathematica Script and Outputs Demo



## k-Basis Example



- Why can we convert our nucleon lambdas into this spin-flip/non-spin-flip basis?
  - From our parity relation we have (ignoring other indices)  $T_{++}=\pm T_{--}$  and  $T_{+-}=\pm T_{-+}$
  - Redundant to have all four summed over if (--) is needed we just take  $\pm$  of (++)
- + factor is trivial but why can we reduce our basis even when they are related by the factor
   -1?

## Example:

- Can describe a standard 2-D cartesian basis in terms of (1,0),(0,1),(-1,0),(0,-1)
- With this we can describe every point on a 2-D plane
- Clearly redundant as (-1,0) = -(1,0)
- So we just express our basis in terms of the linearly independent (1,0) and (0,1)
- Same principle but applied to a more abstract case

# Transverse Parity Proof



### Proof

$$\hat{\mathcal{P}}^{(\epsilon)} \mathcal{T}^{I}_{Tm;\lambda_{1}\lambda_{2}} = {}^{(\epsilon)} \mathcal{T}_{T-m;-\lambda_{1}-\lambda_{2}} = \frac{1}{2} \left[ \mathcal{T}^{I}_{1-m;-\lambda_{1}-\lambda_{2}} - \epsilon(-1)^{m} \mathcal{T}^{I}_{-1m;-\lambda_{1}-\lambda_{2}} \right]$$

$$= \frac{1}{2} \left[ -(-1)^{m+\lambda_{1}-\lambda_{2}} \mathcal{T}^{I}_{-1m;\lambda_{1}\lambda_{2}} + \epsilon(-1)^{\lambda_{1}-\lambda_{2}} (-1)^{2m} \mathcal{T}^{I}_{1-m;\lambda_{1}\lambda_{2}} \right]$$

$$\implies \text{under exchange m } \leftrightarrow -m$$

$${}^{(\epsilon)} \mathcal{T}_{Tm;-\lambda_{1}-\lambda_{2}} = \epsilon(-1)^{\lambda_{1}-\lambda_{2}} {}^{(\epsilon)} \mathcal{T}_{Tm;\lambda_{1}\lambda_{2}}.$$