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Out of Equilibrium Thermal bath

evolutionX X

1

X X

1

X X

1

Non-relativistic
Stores some energy
(         ) before BBN

ω e
± εω

X Hp,vac → 1/p

!X ↑ 101 ↓ 103 s→1
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dϑX
dt
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ϑ

3M2
pl
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!X

s→1
MeV

ϑε =
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15
T

4
ε , ϑe(Tε)

Pε =
1

3
ϑε , Pe(Tε) Tε
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→ + e

+ ↓↘ εω + εω O(1) MeV εe εx εsp

ϱp =

(
fϑe ϑex
ϑ↑ex fϑx

)
dϱp
dt

= ↓i [Hp, ϱp] + C (ϱp)
dfϑsp

dt
= C (fϑsp

)

Hp =
M2

2p︸︷︷︸
Hp,vac

↓8
≃
2

3
GFp

[
El

m2
W

+
Eϑ

m2
Z

]
+
≃
2GF

∫
d
3p↓

(2ϖ)3
(ϱp→ ↓ ϱp→)

︸ ︷︷ ︸
Hp,mat

Hp = Hp,vac +Hp,mat

C (ϱp) =

(
Rϑe ↓Dϑex

↓Dϑ↑ex Rϑx

)
C (fϑsp

) = Rϑx
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dt
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dTε

dt
=
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dt
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a(t)
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ςϑε
ςTε

∣∣∣∣
a(t)

Rω(k) =
CωG

2
FkT

4
ε

1 + ek/Tω
(1↓ fϑe (k)) D(k) =

1

2
CωG

2
FkT

4
ε Ce ↗ 1.27 Cµ,ϖ ↗ 0.92

ϱp ⇐ 1

2

(
P0φ

0 + P · ω
)

Hi = Tr
[
Hpφ

i
]

C0 = Tr [C (ϱp)] Ci = Tr
[
C (ϱp)φ

i
]

Ṗ = H⇒ P+ C

Ṗ0 = C0

Up(t) = exp [↓i tHp,vac] ω ↘ ω̃ = U†

p (t)φ
iUp(t) Rp(t) ⇑Rp(t)⇓ p

2 ⇔ ↼m2

x = mea y = pa z = Tεa ϑ̄ =

(
x

me

)4

ϑ P̄ =

(
x

me

)4

P

t ↘ x = mea p ↘ y = pa Tε ↘ z = Tεa

ϑ ↘ ϑ̄ =

(
x

me

)4

ϑ P ↘ P̄ =

(
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me

)4

P

z ↓↘ (11/4)1/3 Rϑe > Rϑx

|Hvac| → T
→1
ε |Hmat| → T

5
ε 1/!X p → Tε E → T

4
ε ω e

± εω

s → g↑z
3

g↑ = 2 + 4⇒ 7

8
=
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2
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2
z
3
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(
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Out of Equilibrium Thermal bath

All charged leptons but electrons are suppressed

Negligible 3rd gen effects1

1Hasegawa et al. [arXiV:1908.10189]
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Ṗ0 = C0

Up(t) = exp [↓i tHp,vac] ω ↘ ω̃ = U†

p (t)↼
iUp(t) Rp(t) ⇑Rp(t)⇓ p

2 ⇔ ↽m2

x = mea y = pa z = Tεa ϖ̄ =

(
x

me

)4

ϖ P̄ =

(
x

me

)4

P

t ↘ x = mea p ↘ y = pa Tε ↘ z = Tεa

ϖ ↘ ϖ̄ =

(
x

me

)4

ϖ P ↘ P̄ =

(
x

me

)4

P

z ↓↘ (11/4)1/3 Rϑe > Rϑx

|Hvac| → T
→1
ε |Hmat| → T

5
ε 1/!X p → Tε E → T

4
ε ω e

± εω

s → g↑z
3

g↑ = 2 + 4⇒ 7

8
=

11

2

11

2
z
3
i = 2z3f

zf

zi
=

(
11

4

)1/3

⇀ ”

1

X X mX !X ω ω e
±

e
±

mX → TRH

dεX
dt

= ↑(!X + 3H)εX

εω =
ϑ2

15
T

4
ω Pω =

εω
3

εe = εe (Tω) Pe = Pe (Tω)

e
→

e
+

Z

ϖε

ϖε

e
→ ϖe

W

e
+ ϖe

1

X X mX !X ω ω e
±

e
±

mX → TRH

dεX
dt

= ↑(!X + 3H)εX

εω =
ϑ2

15
T

4
ω Pω =

εω
3

εe = εe (Tω) Pe = Pe (Tω)

e
→

e
+

Z

ϖε

ϖε

e
→ ϖe

W

e
+ ϖe

1



Theory: 07

Effective two-flavor mixing

Out of Equilibrium Thermal bathX X

1

X X mX !X ω ω e
±

e
±

mX → TRH

dεX
dt

= ↑(!X + 3H)εX

1

X X mX !X ω ω e
±

e
±

mX → TRH

dεX
dt

= ↑(!X + 3H)εX

1

ω e
± εω

X Hp,vac → 1/p

ϑX = 1/!X ↑ 10→3 ↓ 10→1 s mX ↔ TRH

dϖX
dt

= ↓ (!X + 3H) ϖX H
2 =

ϖ

3M2
pl

TRH ↗ 0.7

√
!X

s→1
MeV

ϖε =
ϱ2

15
T

4
ε , ϖe(Tε)

Pε =
1

3
ϖε , Pe(Tε) Tε

e
→ + e

+ ↓↘ εω + εω O(1) MeV εe εx εsp

ςp =

(
fϑe ϖex
ϖ↑ex fϑx

)
dςp
dt

= ↓i [Hp, ςp] + C (ςp)
dfϑsp

dt
= C (fϑsp

)

Hp =
M2

2p︸︷︷︸
Hp,vac

↓8
≃
2

3
GFp

[
El

m2
W

+
Eϑ

m2
Z

]
+
≃
2GF

∫
d
3p↓

(2ϱ)3
(ςp→ ↓ ςp→)

︸ ︷︷ ︸
Hp,mat

Hp = Hp,vac +Hp,mat

C (ςp) =

(
Rϑe ↓Dϖex

↓Dϖ↑ex Rϑx

)
C (fϑsp

) = Rϑx

dϖ

dt
= ↓3H(ϖ+ P)

dTε

dt
=

!XϖX ↓ 4H (ϖε + ϖϑ)↓ 3H (ϖe + Pe)↓
dϖϑ
dt

φϖe
φTε

∣∣∣∣
a(t)

+
φϖε
φTε

∣∣∣∣
a(t)

Rω(k) =
CωG

2
FkT

4
ε

1 + ek/Tω
(1↓ fϑe (k)) D(k) =

1

2
CωG

2
FkT

4
ε Ce ↗ 1.27 Cµ,ϖ ↗ 0.92

ςp ⇐ 1

2

(
P0↼

0 + P · ω
)

Hi = Tr
[
Hp↼

i
]

C0 = Tr [C (ςp)] Ci = Tr
[
C (ςp)↼

i
]
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Ṗ0 = C0

Up(t) = exp [↓i tHp,vac] ω ↘ ω̃ = U†

p (t)↼
iUp(t) Rp(t) ⇑Rp(t)⇓ p

2 ⇔ ↽m2

x = mea y = pa z = Tεa ϖ̄ =

(
x

me

)4

ϖ P̄ =

(
x

me

)4

P

t ↘ x = mea p ↘ y = pa Tε ↘ z = Tεa

ϖ ↘ ϖ̄ =

(
x

me

)4

ϖ P ↘ P̄ =

(
x

me

)4

P

z ↓↘ (11/4)1/3 Rϑe > Rϑx

|Hvac| → T
→1
ε |Hmat| → T

5
ε 1/!X p → Tε E → T

4
ε ω e

± εω

s → g↑z
3

g↑ = 2 + 4⇒ 7

8
=

11

2

11

2
z
3
i = 2z3f

zf

zi
=

(
11

4

)1/3

⇀ ”

1

ω e
± εω

X Hp,vac → 1/p

ϑX = 1/!X ↑ 10→3 ↓ 10→1 s mX ↔ TRH

dϖX
dt

= ↓ (!X + 3H) ϖX H
2 =

ϖ

3M2
pl

TRH ↗ 0.7

√
!X

s→1
MeV

ϖε =
ϱ2

15
T

4
ε , ϖe(Tε)

Pε =
1

3
ϖε , Pe(Tε) Tε

e
→ + e

+ ↓↘ εω + εω O(1) MeV εe εx εsp

ςp =

(
fϑe ϖex
ϖ↑ex fϑx

)
dςp
dt

= ↓i [Hp, ςp] + C (ςp)
dfϑsp

dt
= C (fϑsp

)

Hp =
M2

2p︸︷︷︸
Hp,vac

↓8
≃
2

3
GFp

[
El

m2
W

+
Eϑ

m2
Z

]
+
≃
2GF

∫
d
3p↓

(2ϱ)3
(ςp→ ↓ ςp→)

︸ ︷︷ ︸
Hp,mat

Hp = Hp,vac +Hp,mat

C (ςp) =

(
Rϑe ↓Dϖex

↓Dϖ↑ex Rϑx

)
C (fϑsp

) = Rϑx

dϖ

dt
= ↓3H(ϖ+ P)

dTε

dt
=

!XϖX ↓ 4H (ϖε + ϖϑ)↓ 3H (ϖe + Pe)↓
dϖϑ
dt

φϖe
φTε

∣∣∣∣
a(t)

+
φϖε
φTε

∣∣∣∣
a(t)

Rω(k) =
CωG

2
FkT

4
ε

1 + ek/Tω
(1↓ fϑe (k)) D(k) =

1

2
CωG

2
FkT

4
ε Ce ↗ 1.27 Cµ,ϖ ↗ 0.92

ςp ⇐ 1

2

(
P0↼

0 + P · ω
)

Hi = Tr
[
Hp↼

i
]

C0 = Tr [C (ςp)] Ci = Tr
[
C (ςp)↼

i
]
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Ṗ0 = C0

Up(t) = exp [↓i tHp,vac] ω ↘ ω̃ = U†

p (t)↼
iUp(t) Rp(t) ⇑Rp(t)⇓ p

2 ⇔ ↽m2

x = mea y = pa z = Tεa ϖ̄ =

(
x

me

)4

ϖ P̄ =

(
x

me

)4

P

t ↘ x = mea p ↘ y = pa Tε ↘ z = Tεa

ϖ ↘ ϖ̄ =

(
x

me

)4

ϖ P ↘ P̄ =

(
x

me

)4

P

z ↓↘ (11/4)1/3 Rϑe > Rϑx

|Hvac| → T
→1
ε |Hmat| → T

5
ε 1/!X p → Tε E → T

4
ε ω e

± εω

s → g↑z
3

g↑ = 2 + 4⇒ 7

8
=

11

2

11

2
z
3
i = 2z3f

zf

zi
=

(
11

4

)1/3

⇀ ”

1

ω e
± εω

X Hp,vac → 1/p

ϑX = 1/!X ↑ 10→3 ↓ 10→1 s mX ↔ TRH

dϖX
dt

= ↓ (!X + 3H) ϖX H
2 =

ϖ

3M2
pl

TRH ↗ 0.7

√
!X

s→1
MeV

ϖε =
ϱ2

15
T

4
ε , ϖe(Tε)

Pε =
1

3
ϖε , Pe(Tε) Tε

e
→ + e

+ ↓↘ εω + εω O(1) MeV εe εx εsp

ςp =

(
fϑe ϖex
ϖ↑ex fϑx

)
dςp
dt

= ↓i [Hp, ςp] + C (ςp)
dfϑsp

dt
= C (fϑsp

)

Hp =
M2

2p︸︷︷︸
Hp,vac

↓8
≃
2

3
GFp

[
El

m2
W

+
Eϑ

m2
Z

]
+
≃
2GF

∫
d
3p↓

(2ϱ)3
(ςp→ ↓ ςp→)

︸ ︷︷ ︸
Hp,mat

Hp = Hp,vac +Hp,mat

C (ςp) =

(
Rϑe ↓Dϖex

↓Dϖ↑ex Rϑx

)
C (fϑsp

) = Rϑx

dϖ

dt
= ↓3H(ϖ+ P)

dTε

dt
=

!XϖX ↓ 4H (ϖε + ϖϑ)↓ 3H (ϖe + Pe)↓
dϖϑ
dt

φϖe
φTε

∣∣∣∣
a(t)

+
φϖε
φTε

∣∣∣∣
a(t)

Rω(k) =
CωG

2
FkT

4
ε

1 + ek/Tω
(1↓ fϑe (k)) D(k) =

1

2
CωG

2
FkT

4
ε Ce ↗ 1.27 Cµ,ϖ ↗ 0.92

ςp ⇐ 1

2

(
P0↼

0 + P · ω
)

Hi = Tr
[
Hp↼

i
]

C0 = Tr [C (ςp)] Ci = Tr
[
C (ςp)↼

i
]
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Polarization basis = Pauli matrix decomposition
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Polarization basis = Pauli matrix decomposition

In this basis, the QKE becomes
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±
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±
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±
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ϑX = 1/!X ↑ 10→3 ↓ 10→1 s mX ↔ TRH

dϖX
dt

= ↓ (!X + 3H) ϖX H
2 =

ϖ

3M2
pl

TRH ↗ 0.7
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︸ ︷︷ ︸
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!XϖX ↓ 4H (ϖε + ϖϑ)↓ 3H (ϖe + Pe)↓
dϖϑ
dt

φϖe
φTε

∣∣∣∣
a(t)

+
φϖε
φTε

∣∣∣∣
a(t)

Rω(k) =
CωG

2
FkT

4
ε

1 + ek/Tω
(1↓ fϑe (k)) D(k) =

1

2
CωG

2
FkT

4
ε Ce ↗ 1.27 Cµ,ϖ ↗ 0.92

ςp ⇐ 1

2

(
P0↼

0 + P · ω
)

Hi = Tr
[
Hp↼
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Polarization basis = Pauli matrix decomposition

In this basis, the QKE becomes

Polarization basis

Out of Equilibrium Thermal bathX X

1

X X mX !X ω ω e
±
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±

mX → TRH
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±
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Ṗ = H⇒ P+ C
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Polarization basis = Pauli matrix decomposition

In this basis, the QKE becomes
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±
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±
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Ṗ = H⇐ P + C
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Temperature evolution
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Ṗ0 = C0

Up(t) = exp [↓i tHp,vac] ω ↘ ω̃ = U†

p (t)↼
iUp(t) Rp(t) ⇑Rp(t)⇓ p

2 ⇔ ↽m2

x = mea y = pa z = Tεa ϖ̄ =

(
x

me

)4

ϖ P̄ =

(
x

me

)4

P

t ↘ x = mea p ↘ y = pa Tε ↘ z = Tεa

ϖ ↘ ϖ̄ =

(
x

me

)4

ϖ P ↘ P̄ =

(
x

me

)4

P

z ↓↘ (11/4)1/3 Rϑe > Rϑx

|Hvac| → T
→1
ε |Hmat| → T

5
ε 1/!X p → Tε E → T

4
ε ω e

± εω

s → g↑z
3

g↑ = 2 + 4⇒ 7

8
=

11

2

11

2
z
3
i = 2z3f

zf

zi
=

(
11

4

)1/3

⇀ ”

1

ω e
± εω

X Hp,vac → 1/p

ϑX = 1/!X ↑ 10→3 ↓ 10→1 s mX ↔ TRH

dϖX
dt

= ↓ (!X + 3H) ϖX H
2 =

ϖ

3M2
pl

TRH ↗ 0.7

√
!X

s→1
MeV

ϖε =
ϱ2

15
T

4
ε , ϖe(Tε)

Pε =
1

3
ϖε , Pe(Tε) Tε

e
→ + e

+ ↓↘ εω + εω O(1) MeV εe εx εsp

ςp =

(
fϑe ϖex
ϖ↑ex fϑx

)
dςp
dt

= ↓i [Hp, ςp] + C (ςp)
dfϑsp

dt
= C (fϑsp

)

Hp =
M2

2p︸︷︷︸
Hp,vac

↓8
≃
2

3
GFp

[
El

m2
W

+
Eϑ

m2
Z

]
+
≃
2GF

∫
d
3p↓

(2ϱ)3
(ςp→ ↓ ςp→)

︸ ︷︷ ︸
Hp,mat

Hp = Hp,vac +Hp,mat

C (ςp) =

(
Rϑe ↓Dϖex

↓Dϖ↑ex Rϑx

)
C (fϑsp

) = Rϑx

dϖ

dt
= ↓3H(ϖ+ P)

dTε

dt
=

!XϖX ↓ 4H (ϖε + ϖϑ)↓ 3H (ϖe + Pe)↓
dϖϑ
dt

φϖe
φTε

∣∣∣∣
a(t)

+
φϖε
φTε

∣∣∣∣
a(t)

Rω(k) =
CωG

2
FkT

4
ε

1 + ek/Tω
(1↓ fϑe (k)) D(k) =

1

2
CωG

2
FkT

4
ε Ce ↗ 1.27 Cµ,ϖ ↗ 0.92

ςp ⇐ 1

2

(
P0↼

0 + P · ω
)

Hi = Tr
[
Hp↼

i
]

C0 = Tr [C (ςp)] Ci = Tr
[
C (ςp)↼

i
]
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Ṗ0 = C0

Up(t) = exp [↑i tHp,vac] ω ↗ ω̃ = U†

p (t)φ
iUp(t) Rp(t) ⇒Rp(t)⇑ p

2 ⇓ ↼m2

x = mea y = pa z = Tεa ϑ̄ =

(
x

me

)4

ϑ P̄ =

(
x

me

)4

P

t ↗ x = mea p ↗ y = pa Tε ↗ z = Tεa

ϑ ↗ ϑ̄ =

(
x

me

)4

ϑ P ↗ P̄ =

(
x

me

)4

P

z ↑↗ (11/4)1/3 Rϑe > Rϑx

|Hvac| → T
→1
ε |Hmat| → T

5
ε 1/!X p → Tε E → T

4
ε ω e

± εω

s → g↑z
3

g↑ = 2 + 4⇐ 7

8
=

11

2

11

2
z
3
i = 2z3f

zf

zi
=

(
11

4

)1/3

↽ ”

1

Recover Standard 
cosmology



Results: 11
Expectation

ω
e
±

ε ω

X
H

p
,v

a
c
→

1/
p

!
X
↑
10

1
↓
10

3
s→

1
m

X
↔

T
R
H

ϑ X
,0

d
ϑ X d
t

=
↓
(!

X
+
3H

)
ϑ X

H
2
=

ϑ

3M
2 p
l

T
R
H
↗

0.
7√

!
X

s→
1

M
eV

ϑ ε
=

ϖ
2

15
T

4 ε
,

ϑ e
(T

ε
)

P
ε
=

1 3
ϑ ε

,
P
e
(T

ε
)

T
ε

e
→
+
e
+
↓↘

ε ω
+
ε
ω

O
(1
)

M
eV

ε e
ε x

ε s
p

ϱ p
=

(
f ϑ

e
ϑ e

x

ϑ↑ e
x

f ϑ
x

)
d
ϱ p d
t

=
↓
i
[H

p
,ϱ

p
]+

C
(ϱ

p
)

d
f ϑ

s
p

d
t

=
C
(f
ϑ

s
p
)

H
p
=

M
2

2p ︸︷
︷︸

H
p
,v

a
c

↓
8≃

2

3
G
F
p

[
E
l

m
2 W

+
E
ϑ

m
2 Z

]
+
≃
2G

F

∫
d
3
p↓

(2
ϖ
)3
(ϱ

p→
↓

ϱ p
→)

︸
︷︷

︸
H

p
,m

a
t

H
p
=

H
p
,v

a
c
+

H
p
,m

a
t

C
(ϱ

p
)
=

(
R
ϑ
e

↓
D
ϑ e

x

↓
D
ϑ↑ e

x
R
ϑ
x

)
C
(f
ϑ

s
p
)
=

R
ϑ
x

d
ϑ

d
t
=

↓
3H

(ϑ
+

P
)

d
T
ε

d
t

=
!
X
ϑ X

↓
4H

(ϑ
ε
+

ϑ ϑ
)
↓
3H

(ϑ
e
+

P
e
)
↓

d
ϑ ϑ d
t

ς
ϑ e

ς
T
ε

∣ ∣ ∣ ∣ a(
t)

+
ς
ϑ ε

ς
T
ε

∣ ∣ ∣ ∣ a(
t)

R
ω
(k
)
=

C
ω
G

2 F
k
T

4 ε

1
+

e
k
/
T

ω
(1

↓
f ϑ

e
(k
))

D
(k
)
=

1 2
C
ω
G

2 F
k
T

4 ε
C
e
↗

1.
27

C
µ
,ϖ
↗

0.
92

ϱ p
⇐

1 2

( P
0
φ
0
+

P
·ω

)
H

i
=

T
r[ H

p
φ
i]

C
0
=

T
r[
C
(ϱ

p
)]

C
i
=

T
r[ C

(ϱ
p
)φ

i]

Ṗ
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Thank you for your attention

Happy to answer any questions


