

Contribution ID: 20

Type: **not specified**

Neutron Star Glitches in Dipolar Supersolids

Monday 2 February 2026 14:55 (25 minutes)

Glitches in neutron stars are sudden increases in their rotational frequency and are believed to originate from the stochastic unpinning of quantized vortices stored in their interior [1]. While previous studies explored this mechanism using externally imposed pinning potentials [2], dipolar atoms in the supersolid phase offer a distinct advantage: their intrinsic density modulation naturally provide the required pinning forces required for vortex trapping [3]. In this talk, I will employ dipolar supersolids as platform to explore vortex dynamics related to a glitch signal. By tuning the strength of the isotropic interaction, we investigate more accurately the dynamics of vortices across different phases (e.g. uniform-modulated superfluid), mimicking different radial depths of the star.

- [1] A. Melatos et al 2008 ApJ 672 1103 (2008)
- [2] Mon. Not. R. Astron. Soc. 415, 1611–1630 (2011)
- [3] Phys. Rev. Lett. 131, 223401 (2023)

Authors: BRIONGOS-MERINO, Héctor (University of Barcelona); Dr TRABUCCO, Silvia (University of Innsbruck); Prof. MANNARELLI, Massimo (INFN Laboratori Nazionali del Gran Sasso); Prof. FERLAINO, Francesca (IQOQI, University of Innsbruck)

Presenter: BRIONGOS-MERINO, Héctor (University of Barcelona)