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ββ DECAY

0νββ : 2n −→ 2p + 2e−

Beyond Standard Model −→
Lepton Number Violation
Majorana Fermions
Hypothetical decay

2νββ : 2n −→ 2p + 2e− + 2ν̄e

Standard Model allowed −→
Lepton Number Conservation
Dirac Fermions
Already measured

Engel et al. Rep. Prog. Phys. 80, 046301, 2017
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MOTIVATION

(T ββ
1/2)−1 ∝ g4

AG0|Mββ |2m2
ββ

mββ =
{

1 if 2νββ∑
j=light Uejmj if 0νββ

Agostini et al. Rev. Mod. Phys. 95, 025002, 2023

Mββ ≡ Nuclear matrix elements
G0 ≡ Phase-space factor (PSF)
gA ≡ Axial coupling
mββ ≡ Effective neutrino mass
Next Decade Experiments

Agostini et al. Phys. Rev. C 104, L042501, 2021
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NUCLEAR MATRIX ELEMENTS

Wavefunctions
Nuclear Shell Model (NSM) and
Quasiparticle Random Phase
Approximation (QRPA)
Phenomenological Hamiltonian

Decay operators
Chiral Effective Field Theory (χEFT)
(LO+NLO+N2LO...)
Ôk ≡ Spin-space operator
τ− ≡ Ladder isospin operator

Cirigliano et al. Phys. Rev. C 97, 065501, 2018
el Morabit et al. JHEP, 06, 082, 2025

Mββ = ⟨0+
f |

∑
a,b

Ôkτ−
a τ−

b |0+
i ⟩

NUCLEAR BOUND STATES
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0νββ : TOTAL N2LO NMEs

M0ν = M0ν
LO + M0ν

N2LO
= M0ν

L + M0ν
S + M0ν

usoft + M0ν
loops

χEFT expectations: (5 − 10)%

M0ν
L(S) ≡ Long(Short)-range

NME
M0ν

usoft ≡ ultrasoft NME
(low momentum
transferred)
M0ν

loops ≡ loop terms
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DC, Jokiniemi, Menéndez, Phys. Lett. B 860, 2025

Results
N2LO contributions:
Non-negligible
Different sign between
many-body methods:
ultrasoft NME
|M0ν

N2LO/M0ν
LO| :

NSM ≤ 20%
QRPA ≤ 30%

Central values:
|M0ν

N2LO/M0ν
LO| ∼

(5 − 15)%
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2νββ : DECAY TO EXCITED STATES
(T 2ν

1/2(0+
GS −→ 0+

1 ))−1 ∝ G2ν · g4
A · (M2ν)2

M2ν ≡ LO NME
+ Lepton energy expansion (Additional
PSFs and NMEs)
+ χEFT corrections up to NLO

DC, Frycz, Menéndez, Benavente, submitted Phys. Lett. B

Results
NSM calculations
Main uncertainty comes from
different Hamiltonians: Deformation
of initial and final states plays a key
role (Dorian’s Talk on Monday)
2 different GT operators: Bare and
renormalized
Coraggio et al. Phys. Rev. C, 100, 014316, 2019

76Ge, 82Se: Experimental evidence
close to theoretical predictions
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SUMMARY AND OUTLOOK
Summary

0νββ N2LO NMEs and 2νββ
half-lives (0+

GS −→ 0+
1 )

0νββ N2LO NMEs are not negligible:
|M0ν

N2LO/M0ν
LO| ≤ 30%

T 2ν
1/2 main uncertainty: Hamiltonian

(deformation)
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Outlook
Use χ−Hamiltonians to compute the
wavefunctions
Extend the decay operator study to
two-body currents
Experimental measurements
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Thank you for your attention!
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BACKUP SLIDES
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ββ DECAY

76Ge: β decay forbidden
Energy difference between odd-odd nuclei
and even-even nuclei−→ Pairing
ββ decay allowed:
76Ge −→ 82Se (Qββ > 0)
Qββ = Ei − Ef − 2me

Qββ ≡ Q−value for ββ decay
me ≡ Electron mass
Ei ≡ Initial energy
Ef ≡ Final energy
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NUCLEAR SHELL MODEL

Hamiltonian
To solve the Schrödinger equation
−→ Heff |0+

GS⟩ = E |0+
GS⟩

Heff ≡ Phenomenological Hamiltonian.
Fitted to experimental data (NN
scattering) and renormalized within each
valence space
Good description of nuclear spectroscopy

Orbitals
Empty orbitals
Valence Space−→ Heff

Inert Core

40Ca:

0s1/2

0p3/2
0p1/2

0d5/2
1s1/2

0d3/2

0f 7/2
1p3/2

0f 5/2

0g9/2
1p1/2

sdpf space

Inert core
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Caurier et al. Rev. Mod. Phys. 77, 427, 2005
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PHENOMENOLOGICAL INTERACTIONS

pf −shell
interactions(A = 40 − 80)

KB3G: Kuo-Brown
interaction Mass
dependence and
monopole modifications
GXPF1A: Bonn-C
potential Two-body
matrix elements from
A = 47 − 66

pfg−shell
interaction(A = 56 − 100)

JUN45: Bonn-C
interaction 133
two-body matrix
elements, 4
single-particle energies
with A = 63 − 96
GCN2850: G-matrix, fit
to 300 energy levels
JJ4BB
RG.PROLATE

sdgh−shell(A = 100 − 140)
GCN5082
QX5082: Bonn-C
potential Binding
energies of 157 low-lying
yrast states from
102−132Sn
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QUASI-PARTICLE RANDOM PHASE APPROXIMATION

QRPA
|QRPA⟩ = |0+⟩ −→ Reference state
n = 0 −→ 2 harmonic oscillator shells
above the Fermi level
Larger valence spaces than NSM but
less complex correlations between
nucleons (less paremeters to fit in the
Hamiltonian)

Suhonen, Springer-Verlag, Berlin Heidelberg, 2007

p n
BCSqp qn

≡ ≡
+u v +u v

|QRPA⟩ =
∑

pn(anqp + bnqn)
Credit, Jokiniemi
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EXPERIMENTS
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CONNECTION: 0νββ-2νββ

Good correlation: systematic calculation
of different nuclei

Jokiniemi et al. Phys. Rev. C 107, 044305, 2023

136Xe: Uncertainty reduction of 0νββ
NME using 2νββ quenching

Civitarese et al. arXiv.2509.16605, 2025
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0νββ : χEFT DIAGRAMS

M0ν = M0ν
L + M0ν

S + M0ν
usoft + M0ν

loops

q ≡ Transferred momentum
Long-range(L)
(q ∼ 100MeV +q−dependent N2LO)

Leading Order (LO)−→already computed
Jokiniemi et al. Phys. Lett. B, 823, 136720, 2021

Short-range(S)
(q >> 100 MeV)

Cirigliano et al. Phys. Rev. C 97, 065501, 2018
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0νββ : χEFT DIAGRAMS

M0ν = M0ν
L + M0ν

S + M0ν
usoft + M0ν

loops

q ≡ Transferred momentum
Ultrasoft(usoft)
(q << 100MeV )

Next-to-next leading order(N2LO)−→New terms
DC, Jokiniemi, Menéndez, Phys. Lett. B 860, 2025

Loop terms
(soft(3)+ultrasoft(1))

Cirigliano et al. Phys. Rev. C 97, 065501, 2018
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0νββ : LEADING ORDER

M0ν
L = M0ν

L,GT + M0ν
L,F + M0ν

L,T

Finite Size Corrections:
q−dependent N2LO (g2

A(q2), g2
V (q2))

M0ν
S ∝ gNN

ν e−q2/Λ2

gNN
ν ≡ Nucleon-Nucleon coupling

Λ ≡ Gaussian cutoff

Results
NSM: M0ν

S /M0ν
L = +(15 − 50)%

QRPA: M0ν
S /M0ν

L = +(30 − 80)%
Jokiniemi et al. Phys. Lett. B 823, 136720, 2021

M0ν
L/S =

∫ ∞
0 CL/S(r)dr

Hard Neutrinos
Soft Neutrinos

Jokiniemi et al. Phys. Lett. B 823, 136720, 2021
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0νββ : ULTRASOFT NME

Study of the intermediate states
dependence of the total ultrasoft
NMEs
M0ν

usoft ∝ ⟨0+
f |GT|1+

n ⟩⟨1+
n |GT|0+

i ⟩
·ln(µus)
µus = mπ

2 . . . 2mπ ≡ Ultrasoft
scale−→Main uncertainty

Results
Different behaviour between models
around 10 MeV−→Different sign

M0ν
tot,usoft = M0ν

usoft + M0ν
tot,usoft

76Ge

0 10 20 30 40 50

−0.5

0

0.5

1

1.5

E(MeV)

R
u
n
n
in
g
∑

M
0
ν

to
t,
u
so

ft

NSM
pnQRPA

Jokiniemi et al. Phys. Lett. B 823, 136720, 2021
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0νββ : CLOSURE VS NON-CLOSURE

Non-closure:
M0ν

non−cl ∝ ⟨0+
f |Jµ(x)|Jπ

n ⟩⟨Jπ
n |Jµ(y)|0+

n ⟩
q(q+En− 1

2 (Ef +Ei ))

q ≃ kF ≃ 100MeV
En − 1

2(Ei + Ef ) −→ 0
JµJµ = hGT + hF + hT

Closure:
M0ν

L ∝ ⟨0+
f |Jµ(x)Jµ(y)|0+

n ⟩
q2

Main difference comes from
GT|1+

n ⟩
Same dependence as M0ν

usoft

Sen’kov, Horoim Phys. Rev. C 88, 064312
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0νββ : CLOSURE VS NON-CLOSURE

According to χEFT the ultrasoft term
must be the main contribution beyond the
closure approximation:
M0ν

non−cl − M0ν
L = ∆cl ∼ M0ν

tot,usoft
Cirigliano et al. Phys. Rev. C 97, 065501, 2018

Results
Agreement in the sign between ∆cl and
M0ν

tot,usoft
NSM: Good agreement with χEFT
QRPA: Milder agreement with χEFT

Important uncertainties due to µus
dependence
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DC, Jokiniemi, Menéndez, Soriano, Phys. Lett. B, 860, 2025
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0νββ : CLOSURE ENERGIES

Neacsu, Horoi, Phys. Rev. C, 91, 024309, 2015

Sarkar et al. arXiv:2406.13417v1, 2024
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0νββ : LOOP NMEs

M0ν
loops,soft = M0ν

AA,loops + M0ν
VV ,loops + M0ν

CT ,loops

Results
Important contributions in short-range
distances
Similar behaviour between models
Main dependence −→ Λ

Λ = 349 MeV Λ = 550 MeV
Most reliable: Λ = 349

Uncertainties: Heff , µ, Λ
µ ≡ Renormalization scale
M0ν

loops,soft =
∫ ∞

0 C0ν
loops,soft(r)dr
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DC, Jokiniemi, Menéndez, Soriano, Phys. Lett. B, 860, 2025
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2νββ : HALF-LIFE UP TO NLO

T 2ν
1/2 = g4

A(M−1
GT)2∆0[G2ν

0 + ξ31
∆2
∆0

G2ν
2 + G2ν

4 (ξ51
∆2
∆0

+ 1
3ξ2

31) + G2ν
22 + G2ν

M ]

Taylor expansion

ξ31 = M−3
GT

M−1
GT

ξ51 = M−5
GT

M−1
GT

M−2m−1
GT ∝ ⟨0+

f |GT|1+
n ⟩⟨1+

n |GT|0+
i ⟩

(En− 1
2 (Ei +Ef ))2m+1

Šimkovic et al. Phys. Rev. C, 97, 034315, 2018

NLO Corrections
G2ν

M ≡ New weak magnetism
contribution
∆0, ∆2 ≡ one-pion exchange
terms and WM insertion (same
NMEs than M0ν

L (mπ))

el Morabit et al. JHEP, 06, 082, 2025

Daniel — Precision ββ Nuclear Matrix Elements 8 / 8


	Introduction
	Results
	Conclusions
	Backup

