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“Ab Initio” Nuclear Structure
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Ab Initio Nuclear Structure
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Ab Initio Nuclear Structure
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The Solution: Al




How can Al help us?



Neural Quantum States
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Neural Quantum States
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Neural Quantum States
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Why Neural Networks?

* NNs have “oco power”: a neural network
can approximate any continuous function.

* Space complexity: polynomial scaling of
memory resources... possibly!
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FermiNet (Quantum Chemistry)
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FermiNet (Quantum Chemistry)
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NQS for Nuclei
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1. Neural Network Architecture



Physical properties in NNs

* Particle exchange symmetry

779(331; Loy ... 7'CCN) — iw(a:QJ‘/L.la :'/L.N)

* Spherical symmetry

(Z) = (RT)

* Time-reversal symmetry

w(f7 0) — w(T(fv U))




Reflection Symmetry

(@) = (x) =




Particle Exchange Symmetry

¢NQS($17$27 733]\7) — YPEQUIV ° det ¢GSM($17$27 7$N)

)
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JW.T Keeble, M. Drissi, A. Rojo-Francas, B. Julia-Diaz & A. Rios, Phys. Rev. A. 108 (2023)



Towards a universal recipe...
- Continous groups: what about Lie groups? SU(2) SO(3)

* Mixed groups: what about product groups? SU(Z) X SN
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* Continous groups: what about Lie groups?

SU(2)
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* Mixed groups: what about product groups? SU(Z) X SN
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R. Kondor & S. Trivedi, arXiv:1802.03690
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2. Optimisation Strategy



Gradient Descent

* Locallinear Model: M, (§) = L1§ + C

* Update: 9n+1 = Qn + 571 where On = argminger Mn(9)
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Gradient Descent

* Locallinear Model: M, (§) = L1§ + C
* Update: 9n+1 = Qn + (5n where On = argminger Mn(9)
(Sn — —(XVE(QTL) 9n—|—1 = Qn — OéVE(@n)
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Gradient Descent

* LocalLinear Model: M, (0) = L1§ + C

* Update: 9n+1 = Qn + 5n where On =argminser M (9)
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Second-order optimisation
* Local Quadratic Model: M, (§) = ;5TQ5 + L5+ C
 Trustregion: Tn — {5: 5TRn(5 < 7“2}

* Update: 9n+1 — Qn + 571 where On =argmingep M (9)
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Second-order optimisation
* Local Quadratic Model: M, (§) = ;5TQ5 + L5+ C
 Trustregion: Tn — {5: (5TRTL(5 < *r‘2}

* Update: 9n+1 — an + dn where On =argmingep M (9)
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Second-order optimisation
* Local Quadratic Model: M, (§) = ;5TQ5 + L5+ C
 Trustregion: Tn — {5: (5TRTL(5 < *r‘2}

* Update: 9n+1 — an + dn where On =argmingep M (9)

én9;+1 é*



Second-order optimisation
* Local Quadratic Model: M, (§) = ;5TQ5 + L5+ C
 Trustregion: Tn — {5: (5TRTL(5 < *r‘2}

* Update: 9n+1 — an + dn where On =argmingep M (9)




Second-order optimisation
* Local Quadratic Model: M, (§) = ;5TQ5 + L5+ C
 Trustregion: Tn — {5: (5TRTL(5 < *r‘2}

 Update: 9n+1 =0, +0, where! 0, = — (Qn + )\an)_l VE(Qn)




Second-order optimisation JEP—
* Local Quadratic Model: M, (§) = ;5TQ5 + L5+ C '\I [, = V@E !

- Trustregion: 1 = {0: (5TRTL(5 < *r‘2}

 Update: 9n+1 =0, +0, where! 0, = — (Qn + )\an)_l VE(Qn)




Second-order optimisation
* Local Quadratic Model: M, (§) = ;5TQ5 + L6+ C

* Trustregion: Tn = {5 (STR,H(S S 7“2}
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StOChaStiC RGCO nfigu I‘atiOI‘I “Quantum Geometric Tensor”

1 oY, O 0 O
* Local Quadratic Model: M, (§) = 25TQ5 + LT+, Q;;(0)= <({;g?7 ({;g?> _ <(‘;;.0 7¢0> <%’5Tfé>
(] ] 1 Jj

* Trustregion: / — {5: (5TR,H(5 < ’r‘2}7 R, =1

 Update: 9n+1 =0, +0, where! 0, = — (Qn -+ )\an)_l VE(@H)



Stochastic Reconfiguration
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Quantum Natural Gradient
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A quantum generalization of Natural
Gradient Descent is presented as part of
a general-purpose optimization framework
for variational quantum circuits. The opti-
mization dynamics is interpreted as mov-
ing in the steepest descent direction with
respect to the Quantum Information Ge-
ometry, corresponding to the real part of
the Quantum Geometric Tensor (QGT),
also known as the Fubini-Study metric ten-
sor. An efficient algorithm is presented
for computing a block-diagonal approxi-
mation to the Fubini-Study metric tensor
for parametrized quantum circuits, which
may be of independent interest.

1 Introduction

Variational optimization of parametrized quan-
tum circuits is an integral component for many
hybrid quantum-classical algorithms, which are
arguably the punnhnw applications of

most
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is based on the variational optimization of a cost func-
tion to be evaluated on a quantum device, providing
a new playground for hybrid quantum-classical learning
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2]-perhaps the most promising quan-
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As a fundamental concept in quantum physics,
ground state wave function plays a central role in un-
derstanding the behavior of many-body quantum sys-
tems. The accurate numerical solution of ground states,
however, becomes an extraordinary challenge for existing
numerical methods, especially in complex and large two-
dimensional s;
on the individual utilized method, such as the
of dimensionality™
the notorious sign problem [2] in quantum Monte Carlo
(QMC)

traction complexity in tensor network (TN) methods
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Efficient optimization of deep neural quantum states toward machine precision

Ao Chen and Markus Heyl
Center for Electronic Correlations and Magnetism,
University of Augsburg, 86135 Augsburg, Germany

Neural quantum states (NQSs) have emerged as a

the quantum many-body problem.

novel promising numerical method to solve

However, it has remained a central challenge to train modern

large-scale deep network architectures to desired quantum state accuracy, which would be vital in
utilizing the full power of NQSs and making them competitive or superior to conventional numerical

approaches.
reduces the optimi

Here, we propose a minimum-step stochastic reconfiguration (MinSR) method that
tion cost by orders of magnitude while keeping similar accuracy as compared to

conventional stochastic reconfiguration. MinSR allows for accurate training on unprecedentedly deep

NQS with up to 64 layers and more than 10° parameters in the spin-1

/2 Heisenberg .J;-J> models

on the square lattice. We find that this approach yields better variational energies as compared to
existing numerical results and we further observe that the accuracy of our ground state calculations
approaches different levels of machine precision on modern GPU and TPU hardware. The MinSR
method opens up the potential to make NQS superior as compared to conventional computational
methods with the capability to address yet inaccessible regimes for two-dimensional quantum matter

in the future.

the

The respective challenges depend
“curse
in exact diagonalization (ED) [1],

[3], or the entanglement growth and matrix con-

Recently, the neural quantum state (NQS) has been
introduced ¢
of ground states of quantum matter by means of artifi-
We are far

a promising alternative for the calculation

nature of entanglement in the spin chain.

networks, we find significantly lower variational energies
outperforming conventional numerical approaches up to
lattice sizes of 16 x 16 spins. Most importantly, we ob-
serve that our ground state results reach different levels
of machine precision. Thus, with MinSR we are able to
reach the frontier where the sole limitation of applying
the NQS approach to complex two-dimensional quantum
matter is not anymore the expressive power of the neural
network but rather the inherent numerical precision of
the computing device. This is of key importance to ex-
ploit the full power of NQS for the calculation of ground
states in the future opening up the potential to address
vet inaccessible regimes of quantum many-body systems
also in higher spatial dimensions.

form such a detailed understanding of machine learning

inspired methods.

Thus it is natural that some studies have related com-

plex RBM states to tensor network states [17,

18]. But

these studies are mostly based on constructing abstract
mappings between RBM wave functions and tensor net-



Decisional Gradient Descent
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DGD vs. ADAM
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