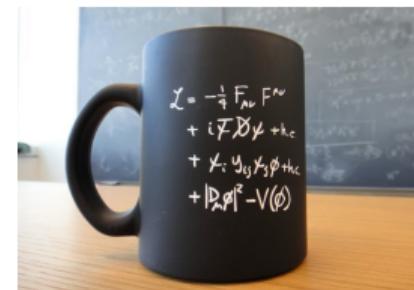
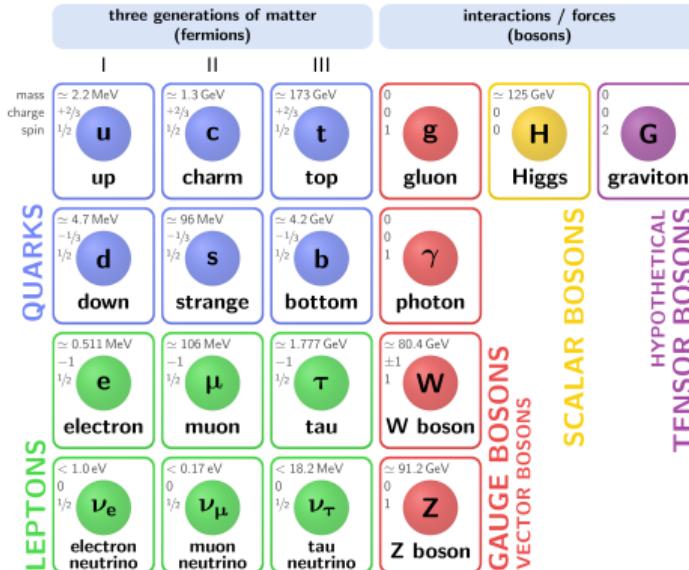
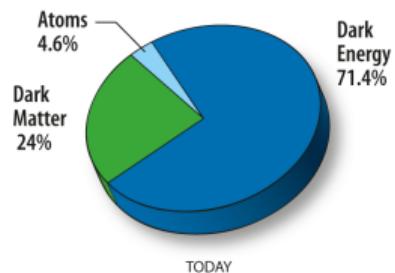


New Physics Searches in Hadronic Processes

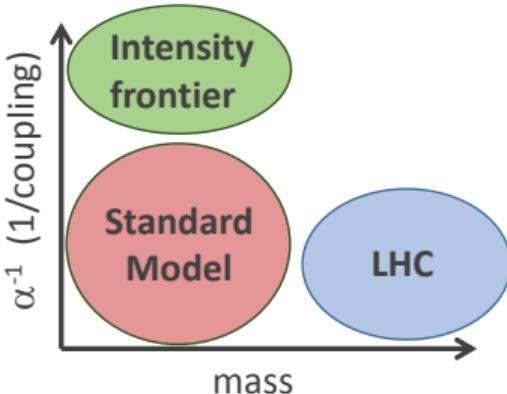


Sergi González-Solís (sergig@icc.ub.edu)

Barcelona, January 28, 2026

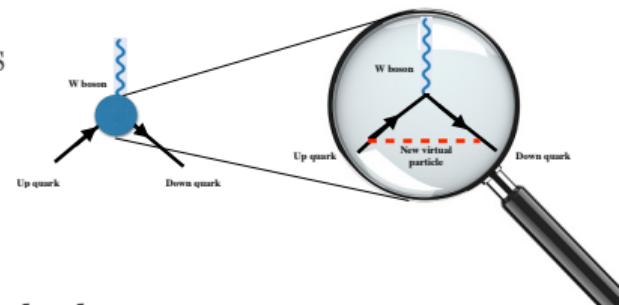
The Standard Model of Particle Physics


- Describes **Nature** in a economic and elegant way

- Validated over a wide variety of energy scales
- Is the SM the **final** theory of Nature?

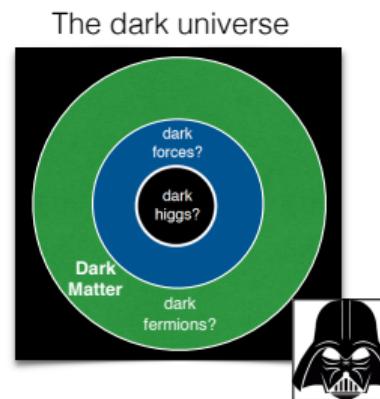
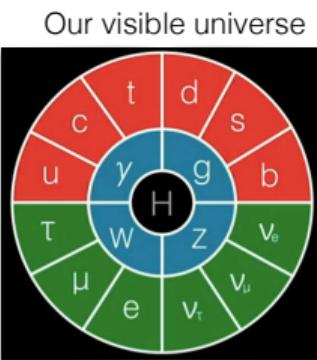

Beyond the Standard Model

- The SM fails to explain:
 - **Dark matter:** what is the most prevalent kind of matter in our Universe?
 - **Dark Energy:** what drives the accelerated expansion of the Universe?
 - **Neutrino** masses and oscillations: why do neutrinos have mass? what makes neutrinos disappear and then re-appear in a different form?
 - **Baryon asymmetry** of the Universe: what mechanism created the tiny matter-antimatter imbalance in the early Universe?
 - Several **anomalies in data:** $(g - 2)_\mu$, B -physics anomalies, KOTO anomaly ($K_L \rightarrow \pi^0 \nu \bar{\nu}$), ${}^8\text{Be}$ excited decay, ...
- **Where** can we look for BSM physics?



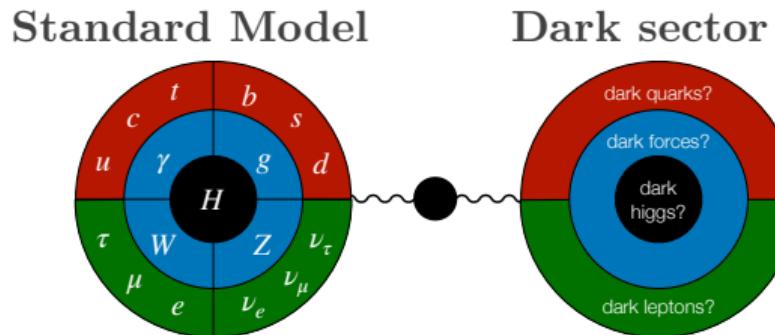
Finding New Physics: energy vs precision frontier

- **Energy frontier:** smash protons as hard as you can, and see what comes out (LHC, FCC 9,000M€)
 - create **new** (heavy) particles and/or study their **effects** on rare processes

- **Intensity frontier:** new feebly interacting particles
 - search for tiny indirect effects, with no (or very precisely known) SM background
- We don't know in which **direction** BSM physics might be

Dark sector physics


- Why a dark sector?
 - Many open problem in particle physics, *e.g.* dark matter, neutrino mass generation or anomalies in data, let us think about dark particles
- What is a dark sector particle?
 - Any particle that does not interact through the SM forces (not charged under the SM symmetries)

- How can we access (and test) the **dark sector**?

Dark sector portals to the Standard Model

⇒ Portal interactions with the SM, only a few are allowed by the SM symmetries

Portal

Vector

Scalar

Neutrino

Axion

Mediators

Dark photon

Dark scalar

Sterile Neutrino

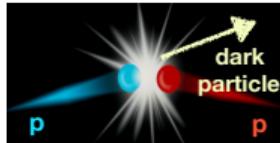
Axion

Portal interactions

$$\epsilon B^{\mu\nu} A'_{\mu\nu}$$

$$\kappa |H|^2 |S|^2$$

$$y H L N$$


$$\frac{a}{f_a} \tilde{G}_{\mu\nu} G^{\mu\nu}$$

A broad program of searches of dark particles

- Vigorous effort of the community proposing new experiments & measurements

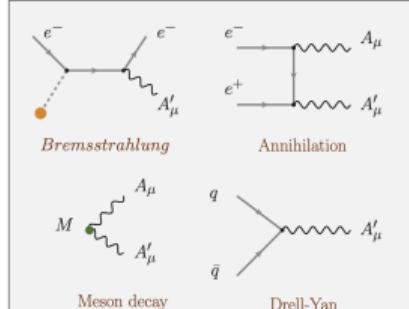
Energy frontier

LHC

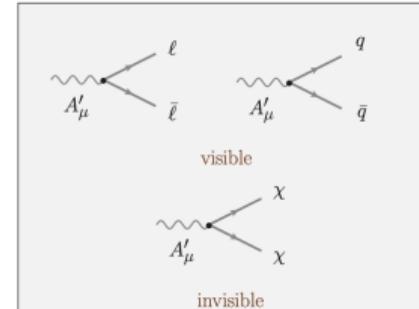
Novel search strategies
are needed!

Flavor-factories

High-luminosity e^+e^- colliders

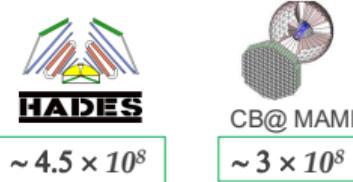

Unique access to dark
sectors!

Other ongoing/future
experiments



- Plenty of dark particles can be produced from meson decays!!

Production modes



Decay modes

High-intensity programs in meson factories

- η/η' -factories

$\eta \sim 10^{12}$

Experiment	Technique	η Total mesons
<i>GlueX@JLAB (running)</i>	$\gamma_{12 \text{ GeV}} p \rightarrow \eta X \rightarrow \text{ neutrals}$	$5.5 \times 10^7/\text{yr}$
<i>JEF@JLAB (approved)</i>	$\gamma_{12 \text{ GeV}} p \rightarrow \eta X \rightarrow \text{ neutrals}$	$1.5 \times 10^8/\text{yr}$
<i>HIAF (approved)</i>		$\sim 10^{13}/\text{yr}$
<i>REDTOP (proposing)</i>	$p_{1.8 \text{ GeV}} Li \rightarrow \eta X$	$3.4 \times 10^{13}/\text{yr}$

- π -factories (PIENU, PIONEER), K -factories (E949, E391, NA62, KOTO), B -factories (LHCb, Belle-(II))

η/η' laboratory for dark sectors

- The η is a pNGB, with $m_\eta \simeq 548$ MeV and $\Gamma_\eta = 1.31$ keV
- The η' : not a pNGB due to $U(1)_A$ anomaly, $m_{\eta'} \simeq 958$ MeV, $\Gamma_{\eta'} = 196$ keV
- Eigenstates of the C, P, CP and G operators: $I^G J^{PC} = 0^+0^{-+}$
- Flavor **conserving** decays \Rightarrow laboratory for symmetry tests
- All their EM and strong decays are **suppressed** at LO $\sim \mathcal{O}(\alpha_{\text{em}}^2)$ or $\mathcal{O}((m_u - m_d)^2)$
- **Search** strategies (visible final states):
 - Resonance searches (bump hunting)
 - Displaced vertices (long-lived decays)
 - Rare decays: new physics process mimics highly-suppressed SM channels
- Other possibilities: Invisible (or partially-invisible) decays
- Perfect **laboratory** to stress-test the SM in search for BSM physics

Rich physics program at η, η' factories

Standard Model highlights

- Theory input for light-by-light scattering for $(g-2)_\mu$
- Extraction of light quark masses
- QCD scalar dynamics

Fundamental symmetry tests

- P,CP violation
- C,CP violation

[Kobzarev & Okun (1964), Prentki & Veltman (1965), Lee (1965), Lee & Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)

- Vector bosons (dark photon, B boson, X boson)
- Scalars
- Pseudoscalars (ALPs)

(Plus other channels that have not been searched for to date)

Channel	Expt. branching ratio	Discussion
$\eta \rightarrow 2\gamma$	39.41(20)%	chiral anomaly, $\eta-\eta'$ mixing
$\eta \rightarrow 3\pi^0$	32.68(23)%	$m_u - m_d$
$\eta \rightarrow \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $\mathcal{O}(p^6)$, leptophobic B boson, light Higgs scalars
$\eta \rightarrow \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$	χ PT, axion-like particles (ALPs)
$\eta \rightarrow 4\gamma$	$< 2.8 \times 10^{-4}$	$< 10^{-11}$ [52]
$\eta \rightarrow \pi^+ \pi^- \pi^0$	22.92(28)%	$m_u - m_d, C/CP$ violation, light Higgs scalars
$\eta \rightarrow \pi^+ \pi^- \gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TFF and $(g-2)_\mu$, P/CP violation
$\eta \rightarrow \pi^+ \pi^- \gamma \gamma$	$< 2.1 \times 10^{-3}$	χ PT, ALPs
$\eta \rightarrow e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g-2)_\mu$, dark photon, protophobic X boson
$\eta \rightarrow \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g-2)_\mu$, dark photon
$\eta \rightarrow e^+ e^-$	$< 7 \times 10^{-7}$	theory input for $(g-2)_\mu$, BSM weak decays
$\eta \rightarrow \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$	theory input for $(g-2)_\mu$, BSM weak decays, P/CP violation
$\eta \rightarrow \pi^0 \pi^0 \ell^+ \ell^-$	$2.68(11) \times 10^{-4}$	C/CP violation, ALPs
$\eta \rightarrow \pi^+ \pi^- e^+ e^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g-2)_\mu$, P/CP violation, ALPs
$\eta \rightarrow \pi^+ \pi^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g-2)_\mu$, P/CP violation, ALPs
$\eta \rightarrow e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_\mu$
$\eta \rightarrow e^+ e^- \mu^+ \mu^-$	$< 1.6 \times 10^{-4}$	theory input for $(g-2)_\mu$
$\eta \rightarrow \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_\mu$
$\eta \rightarrow \pi^+ \pi^- \pi^0 \gamma$	$< 5 \times 10^{-4}$	direct emission only
$\eta \rightarrow \pi^\pm e^\mp \nu_e$	$< 1.7 \times 10^{-4}$	second-class current
$\eta \rightarrow \pi^+ \pi^-$	$< 4.4 \times 10^{-6}$ [53]	P/CP violation
$\eta \rightarrow 2\pi^0$	$< 3.5 \times 10^{-4}$	P/CP violation
$\eta \rightarrow 4\pi^0$	$< 6.9 \times 10^{-7}$	P/CP violation
		Gan, Kubis, Passemar, ST (2020)

Rich physics program at η, η' factories

Standard Model highlights

- Theory input for light-by-light scattering for $(g-2)_\mu$
- Extraction of light quark masses
- QCD scalar dynamics

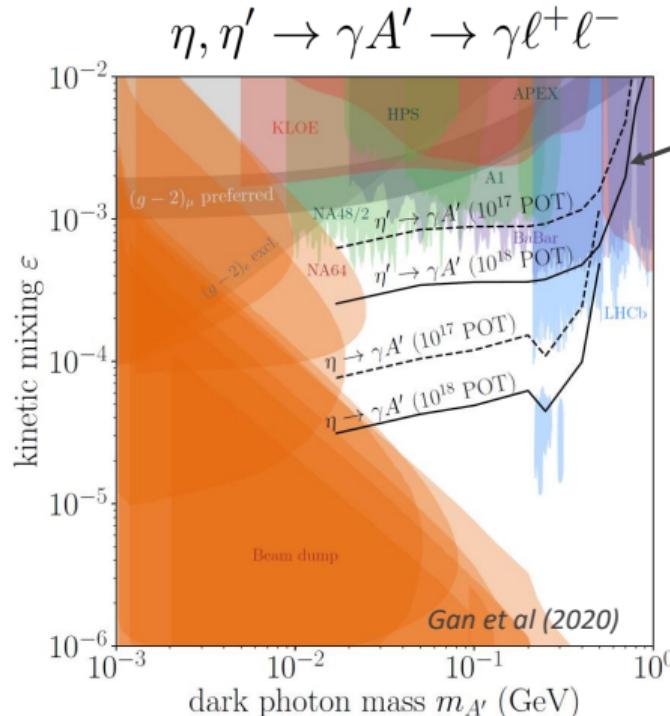
Fundamental symmetry tests

- P,CP violation
- C,CP violation

[Kobzarev & Okun (1964), Prentki & Veltman (1965), Lee (1965), Lee & Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)

- Vector bosons (dark photon, B boson, X boson)
- Scalars
- Pseudoscalars (ALPs)


(Plus other channels that have not been searched for to date)

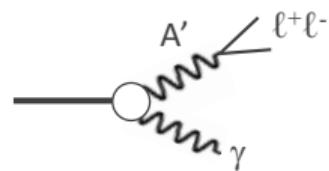
Channel	Expt. branching ratio	Discussion
$\eta \rightarrow 2\gamma$	39.41(20)%	chiral anomaly, $\eta-\eta'$ mixing
$\eta \rightarrow 3\pi^0$	32.68(23)%	$m_u - m_d$
$\eta \rightarrow \pi^0\gamma\gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic B boson, light Higgs scalars
$\eta \rightarrow \pi^0\pi^0\gamma\gamma$	$< 1.2 \times 10^{-3}$	χ PT, axion-like particles (ALPs)
$\eta \rightarrow 4\gamma$	$< 2.8 \times 10^{-4}$	$< 10^{-11}$ [52]
$\eta \rightarrow \pi^+\pi^-\pi^0$	22.92(28)%	$m_u - m_d$, C/CP violation, light Higgs scalars
$\eta \rightarrow \pi^+\pi^-\gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TFF and $(g-2)_\mu$, P/CP violation
$\eta \rightarrow \pi^+\pi^-\gamma\gamma$	$< 2.1 \times 10^{-3}$	χ PT, ALPs
$\eta \rightarrow e^+e^-\gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g-2)_\mu$, dark photon, protophobic X boson
$\eta \rightarrow \mu^+\mu^-\gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g-2)_\mu$, dark photon
$\eta \rightarrow e^+e^-$	$< 7 \times 10^{-7}$	theory input for $(g-2)_\mu$, BSM weak decays
$\eta \rightarrow \mu^+\mu^-$	$5.8(8) \times 10^{-6}$	theory input for $(g-2)_\mu$, BSM weak decays, P/CP violation
$\eta \rightarrow \pi^0\pi^0\ell^+\ell^-$		C/CP violation, ALPs
$\eta \rightarrow \pi^+\pi^-e^+e^-$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g-2)_\mu$, P/CP violation, ALPs
$\eta \rightarrow \pi^+\pi^-\mu^+\mu^-$	$< 3.6 \times 10^{-4}$	theory input for doubly-virtual TFF and $(g-2)_\mu$, P/CP violation, ALPs
$\eta \rightarrow e^+e^-e^*e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_\mu$
$\eta \rightarrow e^+e^-\mu^+\mu^-$	$< 1.6 \times 10^{-4}$	theory input for $(g-2)_\mu$
$\eta \rightarrow \mu^+\mu^-\mu^+\mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_\mu$
$\eta \rightarrow \pi^+\pi^-\pi^0\gamma$	$< 5 \times 10^{-4}$	direct emission only
$\eta \rightarrow \pi^\pm e^\mp \nu_e$	$< 1.7 \times 10^{-4}$	second-class current
$\eta \rightarrow \pi^+\pi^-$	$< 4.4 \times 10^{-6}$ [53]	P/CP violation
$\eta \rightarrow 2\pi^0$	$< 3.5 \times 10^{-4}$	P/CP violation
$\eta \rightarrow 4\pi^0$	$< 6.9 \times 10^{-7}$	P/CP violation

Gan, Kubis, Passemar, ST
(2020)

Dark photon searches

- Broad worldwide effort to search for dark photons (A')
- Most searches are for A' coupling to leptons, $\mathcal{L}_{\text{int}} = -e\varepsilon j_{\text{em}}^\mu A'_\mu$

REDTOP sensitivities projected for FNAL/BNL (10^{18}) or CERN (10^{17}) POT


Gatto (2019)

Many other experiments targeting same dark photon parameter space

Worthwhile to also consider

$$\eta' \rightarrow \pi^+ \pi^- A' \rightarrow \pi^+ \pi^- \ell^+ \ell^-$$

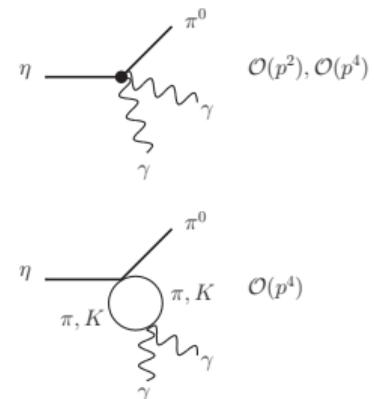
since $\mathcal{B}(\eta' \rightarrow \pi^+ \pi^- \gamma) \approx 10 \times \mathcal{B}(\eta' \rightarrow \gamma \gamma)$

Searches of a leptophobic dark photon in rare $\eta^{(\prime)}$ decays

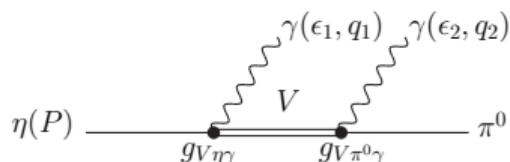
- What if a **new force** couples mainly to quarks?
- **New** boson from a new $U(1)_B$ gauge symmetry (aka B boson, leptophobic Z')

$$\mathcal{L}_{\text{int}} = \frac{1}{3} \mathbf{g}_B \bar{q} \gamma^\mu q B_\mu ,$$

- New gauge coupling: $\alpha_B = \mathbf{g}_B^2 / 4\pi$
- B is a singlet under isospin: $I^G(J^{PC}) = 0^-(1^{--}) \Rightarrow B$ is **ω meson** like

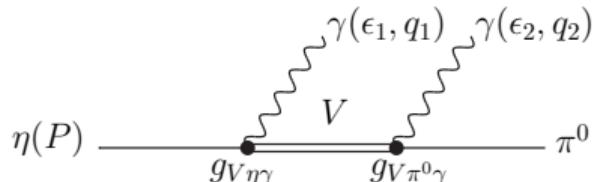

Decay \rightarrow	$m_B \sim 1 - 140$ MeV	Dark-photon-like		m_B [MeV]	Novel signatures
		$B \rightarrow e^+ e^-$	$B \rightarrow \pi^0 \gamma$		
$\pi^0 \rightarrow B\gamma$	$\pi^0 \rightarrow e^+ e^- \gamma$	—	—	140 – 620 MeV	—
$\eta \rightarrow B\gamma$	$\eta \rightarrow e^+ e^- \gamma$	$\eta \rightarrow \pi^0 \gamma \gamma$	—	620 – 1000 MeV	—
$\eta' \rightarrow B\gamma$	$\eta' \rightarrow e^+ e^- \gamma$	$\eta' \rightarrow \pi^0 \gamma \gamma$	$\eta' \rightarrow \pi^+ \pi^- \pi^0 \gamma$	—	$\eta' \rightarrow \eta \gamma \gamma$
$\omega \rightarrow \eta B$	$\omega \rightarrow \eta e^+ e^-$	$\omega \rightarrow \eta \pi^0 \gamma$	—	—	—
$\phi \rightarrow \eta B$	$\phi \rightarrow \eta e^+ e^-$	$\phi \rightarrow \eta \pi^0 \gamma$	—	—	—

- Searches in meson factories are gaining attention
 - $\eta \rightarrow \gamma B \rightarrow \gamma \gamma \pi^0$ (JEF), $\phi \rightarrow \eta B \rightarrow \eta \pi^0 \gamma$ (KLOE-II), $\eta \rightarrow B\gamma \rightarrow \pi^+ \pi^- \gamma$ (Belle-II)


$\eta \rightarrow \pi^0 \gamma \gamma$ decays: Theoretical motivation

- SM motivation:

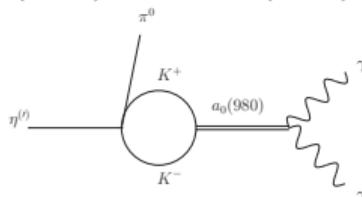
Reference	$\Gamma(\eta \rightarrow \pi^0 \gamma \gamma)$ [eV]
$\mathcal{O}(p^2), \mathcal{O}(p^4)$ tree-level χ PT	0
$\pi + K$ loops at $\mathcal{O}(p^4)$	1.87×10^{-3}
Experimental value (pdg)	0.34(3)


- 1st sizable contribution comes at $\mathcal{O}(p^6)$, but LEC's are not well known
- To test ChPT and a wide range of chiral models, *e.g.* VMD and L σ M

- BSM motivation: search for a B boson via $\eta \rightarrow B\gamma \rightarrow \pi^0 \gamma \gamma$

$\eta \rightarrow \pi^0 \gamma \gamma$ decays: VMD calculation

- Six **diagrams** corresponding to the exchange of $V = \rho^0, \omega, \phi$



- **$g_{VP\gamma}$ couplings:** $\Gamma_{V \rightarrow P\gamma}^{\text{exp}} = \frac{1}{3} \frac{g_{VP\gamma}^2}{32\pi} \left(\frac{m_V^2 - m_P^2}{m_V} \right)^3$, $\Gamma_{P \rightarrow V\gamma}^{\text{exp}} = \frac{g_{VP\gamma}^2}{32\pi} \left(\frac{m_P^2 - m_V^2}{m_P} \right)^3$,

Decay	Branching ratio (pdg)	$ g_{VP\gamma} \text{ GeV}^{-1}$
$\rho^0 \rightarrow \pi^0 \gamma$	$(4.7 \pm 0.6) \times 10^{-4}$	0.22(1)
$\rho^0 \rightarrow \eta \gamma$	$(3.00 \pm 0.21) \times 10^{-4}$	0.48(2)
$\eta' \rightarrow \rho^0 \gamma$	$(28.9 \pm 0.5)\%$	0.40(1)
$\omega \rightarrow \pi^0 \gamma$	$(8.40 \pm 0.22)\%$	0.70(1)
$\omega \rightarrow \eta \gamma$	$(4.5 \pm 0.4) \times 10^{-4}$	0.135(6)
$\eta' \rightarrow \omega \gamma$	$(2.62 \pm 0.13)\%$	0.127(4)
$\phi \rightarrow \pi^0 \gamma$	$(1.30 \pm 0.05) \times 10^{-3}$	0.041(1)
$\phi \rightarrow \eta \gamma$	$(1.303 \pm 0.025)\%$	0.2093(20)
$\phi \rightarrow \eta' \gamma$	$(6.22 \pm 0.21) \times 10^{-5}$	0.216(4)

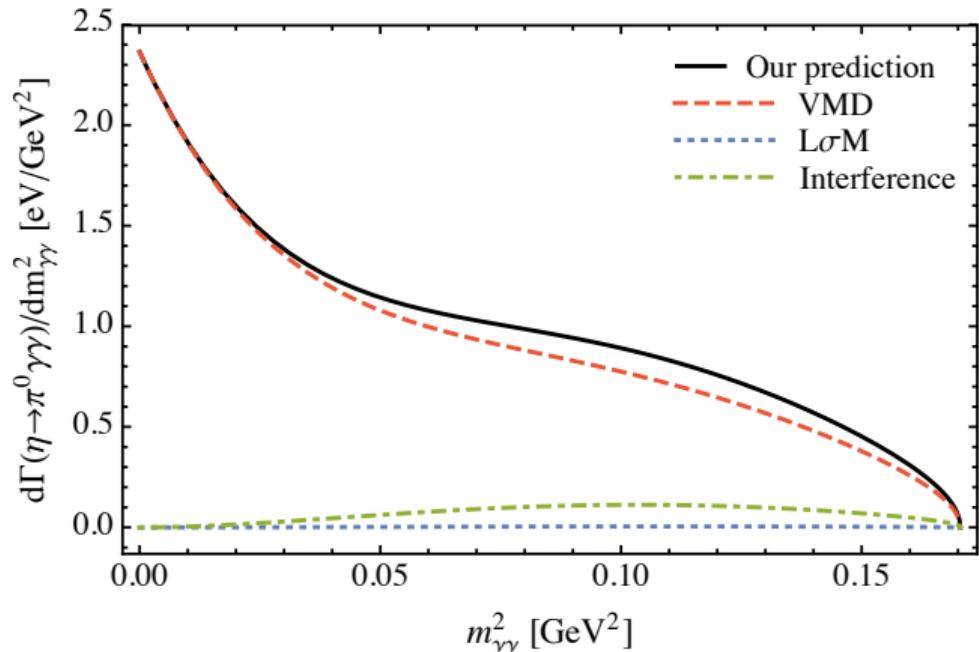
L σ M for the scalar resonance contributions

- χ PT loops complemented by the exchange of scalar resonances, $a_0(980), \kappa, \sigma, f_0(980)$, e.g.:

$$\mathcal{A}_{\eta^{(\prime)} \rightarrow \pi^0 \gamma \gamma}^{\text{L}\sigma\text{M}} = \frac{2\alpha}{\pi} \frac{1}{m_{K^+}^2} L(s_K)\{a\} \times \mathcal{A}_{K^+ K^- \rightarrow \pi^0 \eta^{(\prime)}}^{\text{L}\sigma\text{M}} ,$$

- Scalar amplitudes:

$$\begin{aligned} \mathcal{A}_{K^+ K^- \rightarrow \pi^0 \eta^{(\prime)}}^{\text{L}\sigma\text{M}} = & \frac{1}{2f_\pi f_K} \left\{ (s - m_{\eta^{(\prime)}}^2) \frac{m_K^2 - m_{a_0}^2}{D_{a_0}(s)} \cos \varphi_P + \frac{1}{6} \left[(5m_{\eta^{(\prime)}}^2 + m_\pi^2 - 3s) \cos \varphi_P \right. \right. \\ & \left. \left. - \sqrt{2}(m_{\eta^{(\prime)}}^2 + 4m_K^2 + m_\pi^2 - 3s) \sin \varphi_P \right] \right\} , \end{aligned}$$

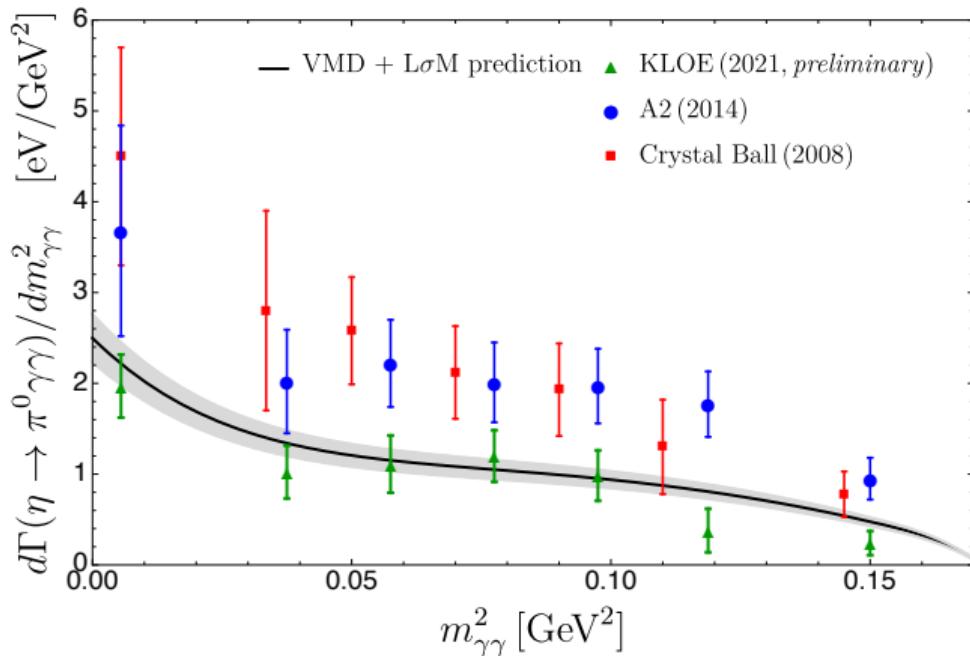

- Complete one-loop propagator for the scalar resonances:

$$D_R(s) = s - m_R^2 + \text{Re}\Pi(s) - \text{Re}\Pi(m_R^2) + i\text{Im}\Pi(s) ,$$

$\eta \rightarrow \pi^0 \gamma\gamma$ predictions

- Our theoretical prediction: $\text{BR} = 1.35(8) \times 10^{-4}$
(Escribano, SGS, Jora, Royo, Phys.Rev.D 102, 034026 (2020))

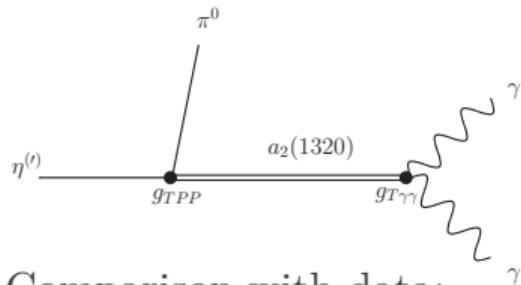
- VMD dominates:
- ρ : 27% of the signal
- ω : 21% of the signal
- ϕ : 0% of the signal
- interference between ρ - ω - ϕ : 52%
- interference between scalar and vector mesons: 7%

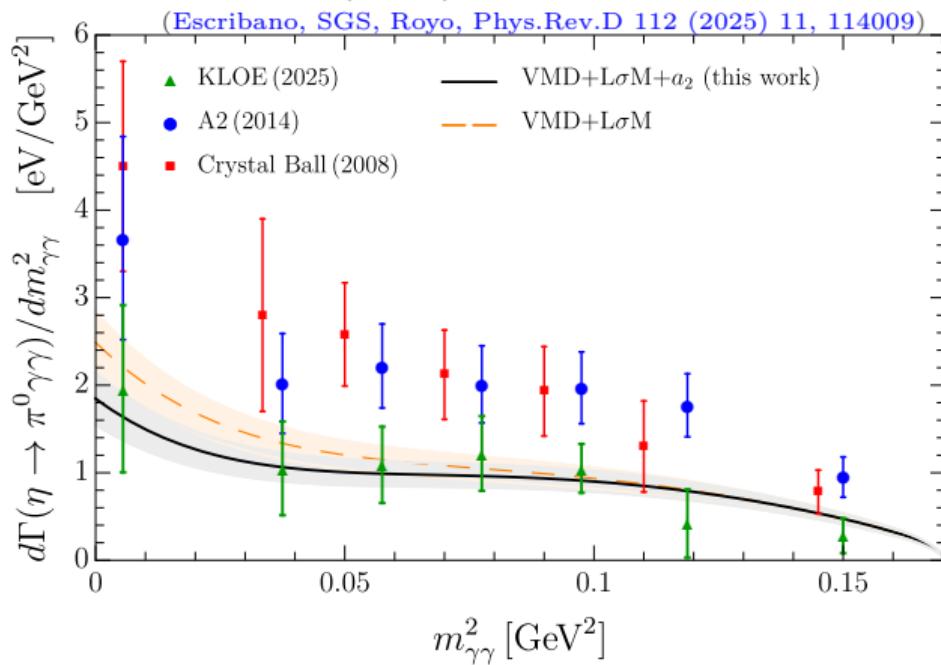


$\eta \rightarrow \pi^0 \gamma\gamma$ predictions

- Comparison of our prediction ($\text{BR} = 1.35(8) \times 10^{-4}$) with experimental data
(Escribano, SGS, Jora, Royo, Phys.Rev.D 102, 034026 (2020))

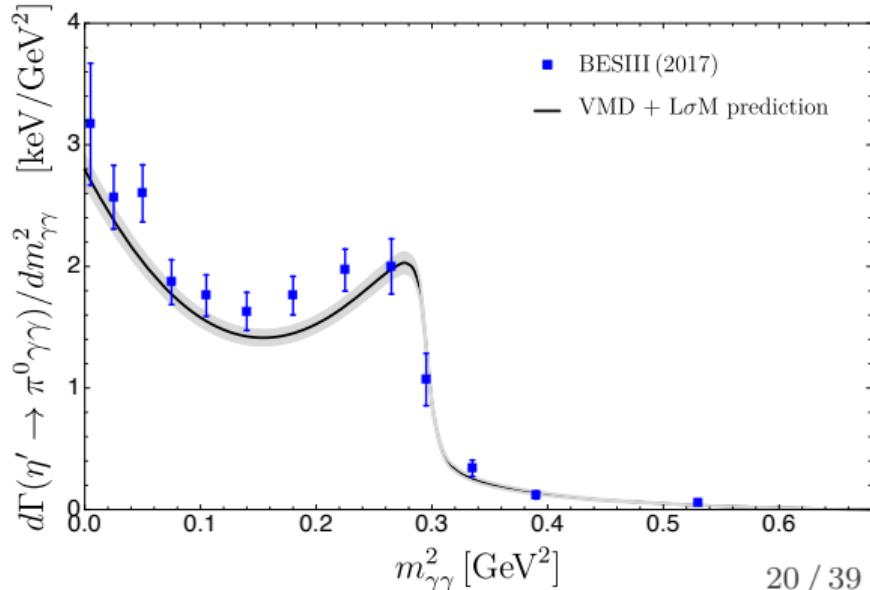
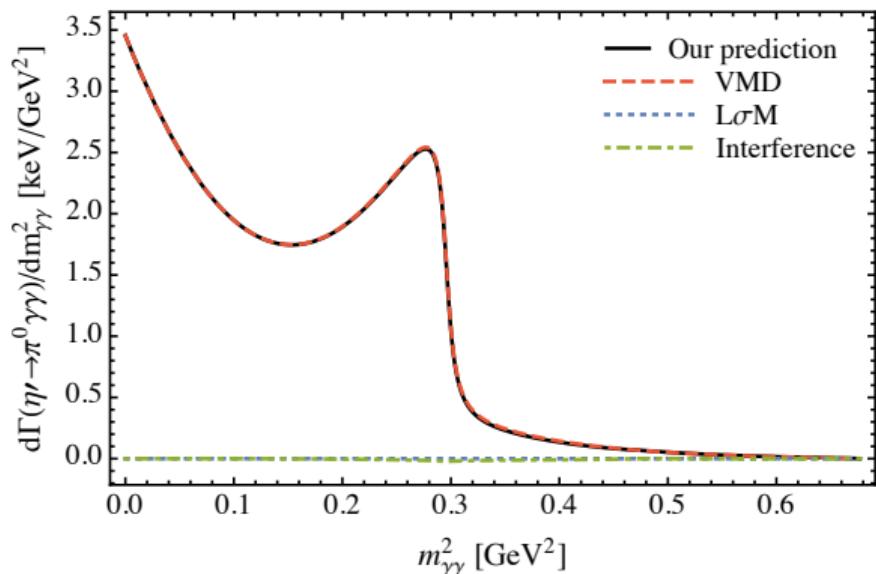
— Shape of the A2
($\text{BR} = 2.54(27) \times 10^{-4}$) and
Crystal Ball
($\text{BR} = 2.21(24)(47) \times 10^{-4}$)
spectra is captured well
(normalization offset)


— Good agreement
with KLOE data
($\text{BR} = 0.98(11)(14) \times 10^{-4}$)

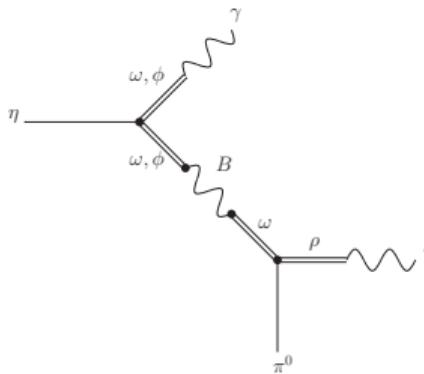
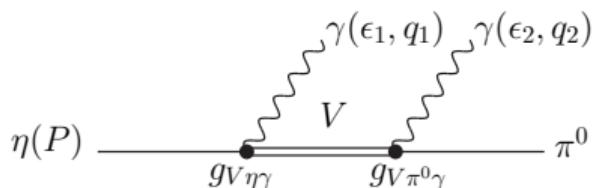

- The experimental situation needs to be **clarified** (A2, JEF, REDTOP)

$a_2(1320)$ tensor meson contribution to $\eta \rightarrow \pi^0 \gamma \gamma$

- One diagram corresponding to the exchange of $a_2(1320)$ in the s -channel

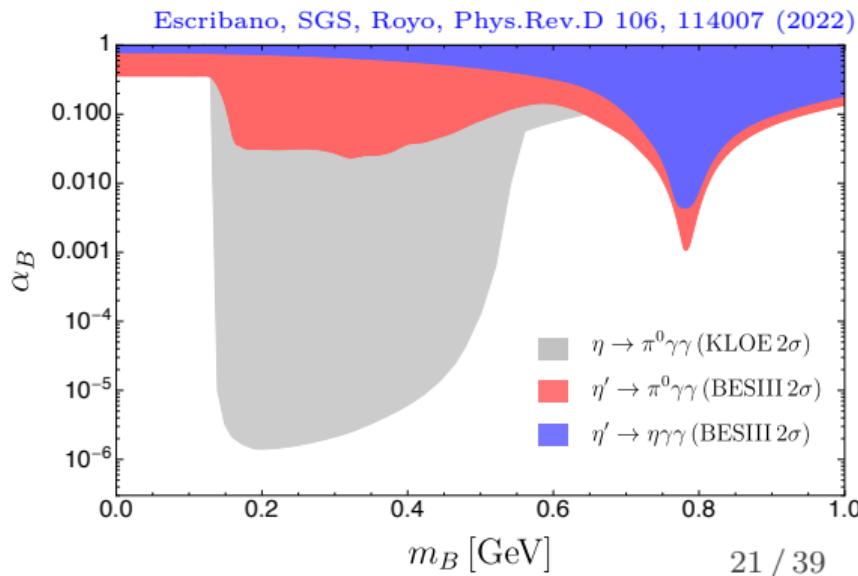


- Comparison with data:
 - Destructive** vector-tensor interference: good agreement with KLOE-II data ([2505.09285](#))

- VMD- a_2 interference $\sim 20\%$ of the signal (could be tested and distinguished from VMD with precise measurements at *e.g.* JEF)



$\eta' \rightarrow \pi^0 \gamma\gamma$ predictions

- $\text{BR} = 2.91(21) \times 10^{-3}$ ([Escribano, SGS, Jora, Royo, Phys.Rev.D 102, 034026 \(2020\)](#))
 - VMD completely dominates: ω (78%), ρ (5%), ϕ (0%), interference (17%)
- First time $m_{\gamma\gamma}$ invariant mass distribution by BESIII;
 $\text{BR} = 3.20(7)(23) \times 10^{-3}$ ([Ablikim *et. al.* Phys.Rev.D 96, 012005 \(2017\)](#))

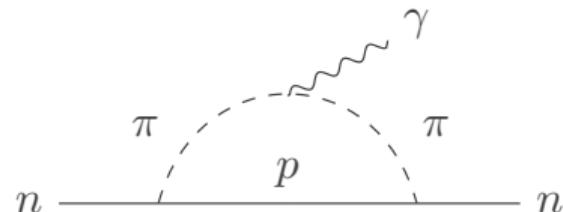
New limits on α_B, m_B


- SM+ B -boson

- $\text{BR}_{\text{VMD}+\text{Bboson}} < \text{BR}_{\text{exp}}$ at 2σ

$\text{BR}(\eta \rightarrow \pi^0 \gamma \gamma)_{\text{exp}}^{\text{pdg}} = 2.56(22) \times 10^{-4}$

$\text{BR}(\eta \rightarrow \pi^0 \gamma \gamma)_{\text{exp}}^{\text{KLOE}} = 0.98(11)(14) \times 10^{-4}$


Strong CP problem

- QCD Lagrangian with a θ term:

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{quarks}} - \frac{1}{4} G_{\mu\nu}^a G^{a,\mu\nu} + \theta \frac{g_s^2}{32\pi^2} \tilde{G}_{\mu\nu}^a G^{a,\mu\nu},$$

- The θ term implies that QCD violates P and CP
- This CP-violation is measurable: the θ term causes an EDM for the neutron

$$|d_n| \sim \bar{\theta}, \text{ with } \bar{\theta} = \theta + \arg(\det M_q)$$

- Experimental upper limits on the neutron EDM:
 $|d_n| \lesssim 1.8 \times 10^{-26} e \text{ cm}$ (C. Abel et. al., PRL 124, 081803 (2020))
- Constrains $\bar{\theta} \lesssim 10^{-10}$
- Why is θ so small? (one of the open issues of the SM)

The QCD axion

- The Peccei-Quinn solution of the strong CP-problem (Peccei, Quinn'77)
 - New $U(1)_A$ global symmetry (a.k.a $U(1)_{\text{PQ}}$),
 - Broken spontaneously at the high energy scale f_a and anomalous
- Nambu-Goldstone boson: the axion a (Weinberg'78; Wilczek'78)

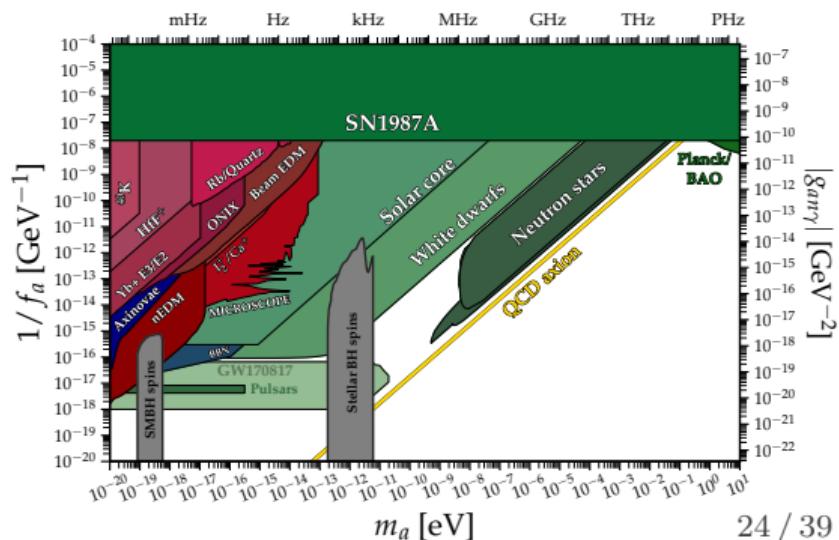
$$\mathcal{L} \supset - \left(\theta + \frac{a}{f_a} \right) \frac{g_s^2}{32\pi^2} \tilde{G}_{\mu\nu}^a G^{a,\mu\nu}.$$

- Its VEV cancels the θ -term: $\theta + \frac{\langle a \rangle}{f_a} = 0$, and solves the strong CP-problem:

$$a \rightarrow \langle a \rangle + a, \quad \mathcal{L} \supset - \frac{a}{f_a} \frac{g_s^2}{32\pi^2} \tilde{G}_{\mu\nu}^a G^{a,\mu\nu}.$$

- Axion mass: $m_a^2 = \frac{m_u m_d}{(m_u + m_d)^2} \frac{m_\pi^2 f_\pi^2}{f_a^2}$
- The scale f_a is identified with the electroweak symmetry breaking scale v :

$$f_a \sim v = (\sqrt{2} G_F)^{-1/2} \approx 246 \text{ GeV},$$


- The PQWW axion ruled out experimentally

Invisible axion models

- *Invisible* models were developed to make the axion weakly coupled ($f_a \gg v$):
 - Dine-Fischler-Srednicki-Zhitnisky (DFSZ) (PLB 104, 199 (1981), SJNP 31, 260 (1980))
SM quarks carry PQ charges
 - Kim-Shifman-Vainshtein-Zakharov (KSVZ) (PRL 43, 103 (1979), NPB 166, 493 (1980))
SM quarks uncharged under the PQ symmetry
- Axion decay constant window from astrophysical and cosmological data:

$$10^8 \text{ GeV} \lesssim f_a \lesssim 10^{18} \text{ GeV},$$

(for compilations of various constraints,
see: <https://cajohare.github.io/AxionLimits/>)

Axion-Like Particles (ALPs)

- “Yukawa basis”: ALP with gluon and quark couplings (*à la* DFSZ)

$$\begin{aligned}\mathcal{L}_{\text{ALP}} = & \mathcal{L}_{\text{QCD}} + \frac{1}{2} (\partial_\mu a) (\partial^\mu a) - \frac{1}{2} M_{PQ}^2 a^2 \\ & - Q_G \frac{\alpha_s}{8\pi} \frac{a}{f_a} G_{\mu\nu} \tilde{G}^{\mu\nu} + \sum_{q=u,d,s} m_q \bar{q} \left(e^{i Q_q \frac{a}{f_a} \gamma_5} \right) q,\end{aligned}$$

M_{PQ} : PQ-breaking contribution to the mass

$Q_{q,G}$: PQ charges

- The heavy-flavor c, b, t quarks contributions have been integrated out
- Equivalent to the “usual” derivative basis (related via chiral rotations of the quarks)¹

¹if weak interactions are neglected

Lagrangian for ALPs coupled to mesons

- Step 1: map \mathcal{L}_{ALP} into χPT at leading order:

$$\begin{aligned}\mathcal{L}_{\text{ALP}}^{\chi\text{PT}@LO} = & \frac{1}{2}\partial_\mu a\partial^\mu a - \frac{1}{2}M_{\cancel{P}\cancel{Q}}^2 a^2 - \frac{1}{2}m_0^2 \left(\eta_0 - \frac{Q_G}{\sqrt{6}}\frac{f_\pi}{f_a}a\right)^2 \\ & + \frac{f_\pi^2}{4}\text{Tr}\left[\partial_\mu U^\dagger \partial^\mu U\right] + \frac{f_\pi^2}{4}\text{Tr}\left[2B_0(M_q(a)U + M_q(a)^\dagger U^\dagger)\right],\end{aligned}$$

with the ALP-dependent quark mass matrix:

$$M_q(a) = \text{diag}\left(m_u e^{iQ_u a/f_a}, m_d e^{iQ_d a/f_a}, m_s e^{iQ_s a/f_a}\right),$$

and the representation of the pNGB chiral meson nonet:

$$U = \exp\left(\frac{i\sqrt{2}\Phi}{f}\right), \quad \Phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi_3 + \frac{1}{\sqrt{6}}\eta_8 + \frac{1}{\sqrt{3}}\eta_0 & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}}\pi_3 + \frac{1}{\sqrt{6}}\eta_8 + \frac{1}{\sqrt{3}}\eta_0 & K^0 \\ K^- & K^0 & -\frac{2}{\sqrt{6}}\eta_8 + \frac{1}{\sqrt{3}}\eta_0 \end{pmatrix}.$$

Diagonalization of the mass matrix

- Step 2: diagonalization of the mass matrix ($\phi \equiv (\pi_3, \eta_8, \eta_0, a)$)

$$\mathcal{L}_{\text{ALP}}^{\chi\text{PT@LO}} \supset -\frac{1}{2}\phi^T \widetilde{M}^2 \phi, \quad \widetilde{M}^2 = \begin{pmatrix} m_{\pi_3}^2 & m_{\pi_3 \eta_8}^2 & m_{\pi \eta_0}^2 & m_{\pi_3 a}^2 \\ & m_{\eta_8}^2 & m_{\eta_8 \eta_0}^2 & m_{\eta_8 a}^2 \\ & & m_{\eta_0}^2 & m_{\eta_0 a}^2 \\ & & & m_a^2 \end{pmatrix},$$

$$\begin{pmatrix} \pi_3 \\ \eta_8 \\ \eta_0 \\ a \end{pmatrix} = \begin{pmatrix} & & \begin{matrix} \theta_{a\pi} \\ \theta_{a\eta_8} \\ \theta_{a\eta_0} \\ 1 \end{matrix} \\ \mathbb{1}_{3 \times 3} & & \\ & \begin{matrix} -\theta_{a\pi} \\ -\theta_{a\eta_8} \\ -\theta_{a\eta_0} \end{matrix} & \end{pmatrix} \begin{pmatrix} & & \begin{matrix} 0 \\ 0 \\ 0 \\ \bar{1} \end{matrix} \\ \mathbb{R}_{3 \times 3} & & \\ & \begin{matrix} 0 \\ 0 \\ 0 \\ \bar{1} \end{matrix} & \end{pmatrix} \begin{pmatrix} \pi^0 \\ \eta \\ \eta' \\ a_{\text{phys}} \end{pmatrix},$$

where \mathbb{R} is an orthogonal matrix that diagonalizes of the π^0 - η - η' subsystem

$$\mathbb{R} = \begin{pmatrix} 1 & -\theta_{\pi\eta} & -\theta_{\pi\eta'} \\ (\theta_{\pi\eta} \cos \theta_{\eta\eta'} + \theta_{\pi\eta'} \sin \theta_{\eta\eta'}) & \cos \theta_{\eta\eta'} & \sin \theta_{\eta\eta'} \\ (\theta_{\pi\eta'} \cos \theta_{\eta\eta'} - \theta_{\pi\eta} \sin \theta_{\eta\eta'}) & -\sin \theta_{\eta\eta'} & \cos \theta_{\eta\eta'} \end{pmatrix}.$$

Mixing angles and physical axion mass

- In the PQ-preserving limit, *i.e.* $M_{PQ} = 0$:

$$\begin{aligned}\theta_{a\pi}^{(PQ)} &= -\frac{f_\pi}{f_a} \frac{1}{(1+\epsilon)} \left(\frac{Q_u m_u - Q_d m_d}{m_u + m_d} + \frac{m_u - m_d}{m_u + m_d} \frac{Q_s + Q_G}{2} + \epsilon \frac{Q_u - Q_d}{2} \right) + \mathcal{O}(f_a^{-2}), \\ \theta_{a\eta_8}^{(PQ)} &= \frac{f_\pi}{f_a} \frac{\sqrt{3}}{2} \frac{1}{(1+\epsilon)} \left(Q_s + \frac{Q_G}{3} - \epsilon \frac{(Q_u + Q_d + 2Q_G/3) + \frac{2B_0 m_s}{m_0^2} (Q_u + Q_d - 2Q_s)}{1 + \frac{6B_0 m_s}{m_0^2}} \right) + \mathcal{O}(f_a^{-2}), \\ \theta_{a\eta_0}^{(PQ)} &= \frac{f_\pi}{f_a} \frac{1}{\sqrt{6}} \frac{1}{(1+\epsilon)} \left(Q_G + \epsilon \frac{Q_G - \frac{6B_0 m_s}{m_0^2} (Q_u + Q_d + Q_s)}{1 + \frac{6B_0 m_s}{m_0^2}} \right) + \mathcal{O}(f_a^{-2}),\end{aligned}$$

$$\text{where } \epsilon \equiv \frac{m_u m_d}{m_s(m_u + m_d)} \left(1 + 6 \frac{B_0 m_s}{m_0^2} \right) \approx 0.04.$$

- Physical axion mass:

$$(m_{a_{\text{phys}}}^{(PQ)})^2 = (Q_u + Q_d + Q_s + Q_G)^2 \frac{B_0 m_u m_d m_s}{\left(m_u m_d + m_u m_s + m_d m_s + \frac{6B_0 m_u m_d m_s}{m_0^2} \right)} \frac{f_\pi^2}{f_a^2},$$

ALP-meson mixing angles

- In the PQ-breaking limit, *i.e.* $M_{\text{PQ}} \neq 0$:

$$\theta_{a\pi} = \theta_{a\pi}^{(\text{PQ})} \left(1 + \frac{M_{\text{PQ}}^2}{m_\pi^2 - m_a^2} \right),$$

$$\theta_{a\eta_8} = \theta_{a\eta_8}^{(\text{PQ})} \left(1 + \cos^2 \theta_{\eta\eta'} \frac{M_{\text{PQ}}^2}{m_\eta^2 - m_a^2} + \sin^2 \theta_{\eta\eta'} \frac{M_{\text{PQ}}^2}{m_{\eta'}^2 - m_a^2} \right) + \theta_{a\eta_0}^{(\text{PQ})} \frac{\sin 2\theta_{\eta\eta'}}{2} \left(\frac{M_{\text{PQ}}^2}{m_{\eta'}^2 - m_a^2} - \frac{M_{\text{PQ}}^2}{m_\eta^2 - m_a^2} \right),$$

$$\theta_{a\eta_0} = \theta_{a\eta_0}^{(\text{PQ})} \left(1 + \sin^2 \theta_{\eta\eta'} \frac{M_{\text{PQ}}^2}{m_\eta^2 - m_a^2} + \cos^2 \theta_{\eta\eta'} \frac{M_{\text{PQ}}^2}{m_{\eta'}^2 - m_a^2} \right) + \theta_{a\eta_8}^{(\text{PQ})} \frac{\sin 2\theta_{\eta\eta'}}{2} \left(\frac{M_{\text{PQ}}^2}{m_{\eta'}^2 - m_a^2} - \frac{M_{\text{PQ}}^2}{m_\eta^2 - m_a^2} \right).$$

- Valid in the small mixing angle approximation, *i.e.* when $\theta_{a\pi}^{(\text{PQ})}, \theta_{a\eta_8}^{(\text{PQ})}, \theta_{a\eta_0}^{(\text{PQ})} \ll 1$
- Physical ALP mass:

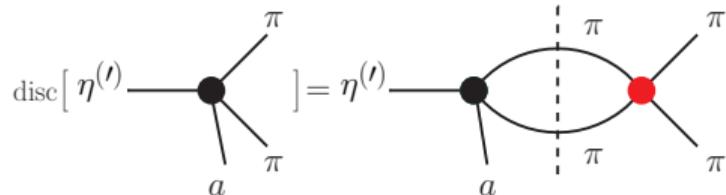
$$m_a^2 \equiv m_{a\text{phys}}^2 = (m_{a\text{phys}}^{(\text{PQ})})^2 + M_{\text{PQ}}^2.$$

- Step 3: re-express $\mathcal{L}_{\text{ALP}}^{\chi\text{PT@LO}}$ in terms of the **physical states**

$$\pi_3 \rightarrow \pi^0 + \theta_{a\pi} a^{\text{phys}}, \eta_8 \rightarrow \cos \theta_{\eta\eta'} \eta + \sin \theta_{\eta\eta'} \eta' + \theta_{a\eta_8} a^{\text{phys}}, \eta_0 \rightarrow -\sin \theta_{\eta\eta'} \eta + \cos \theta_{\eta\eta'} \eta' + \theta_{a\eta_0} a^{\text{phys}},$$

$\eta/\eta' \rightarrow \pi\pi a$ decay amplitudes at LO

$$\mathcal{A}(\eta \rightarrow 2\pi^0 a) = 2! \frac{m_\pi^2}{f_\pi^2} (\cos \theta - \sqrt{2} \sin \theta) \left[\frac{f_\pi}{2\sqrt{3}f_a} \frac{Q_u m_u + Q_d m_d}{m_u + m_d} - \frac{1}{2\sqrt{3}} \frac{m_d - m_u}{m_u + m_d} \theta_{\pi_3 a} + \frac{1}{6} \theta_{\eta_8 a} + \frac{\sqrt{2}}{6} \theta_{\eta_0 a} \right],$$

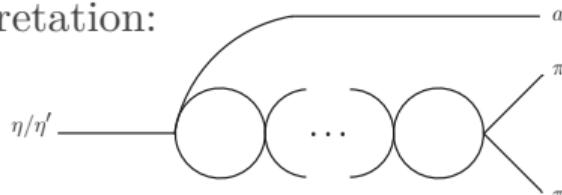

$$\mathcal{A}(\eta \rightarrow \pi^+ \pi^- a) = \frac{m_\pi^2}{f_\pi^2} (\cos \theta - \sqrt{2} \sin \theta) \left[\frac{f_\pi}{\sqrt{3}f_a} \frac{Q_u m_u + Q_d m_d}{m_u + m_d} - \frac{1}{3\sqrt{3}} \frac{m_d - m_u}{m_u + m_d} \theta_{\pi_3 a} + \frac{1}{3} \theta_{\eta_8 a} + \frac{\sqrt{2}}{3} \theta_{\eta_0 a} \right],$$

$$\mathcal{A}(\eta' \rightarrow 2\pi^0 a) = 2! \frac{m_\pi^2}{f_\pi^2} (\sqrt{2} \cos \theta + \sin \theta) \left[\frac{f_\pi}{2\sqrt{3}f_a} \frac{Q_u m_u + Q_d m_d}{m_u + m_d} - \frac{1}{2\sqrt{3}} \frac{m_d - m_u}{m_u + m_d} \theta_{\pi_3 a} + \frac{1}{6} \theta_{\eta_8 a} + \frac{\sqrt{2}}{6} \theta_{\eta_0 a} \right],$$

$$\mathcal{A}(\eta' \rightarrow \pi^+ \pi^- a) = \frac{m_\pi^2}{f_\pi^2} (\sqrt{2} \cos \theta + \sin \theta) \left[\frac{f_\pi}{\sqrt{3}f_a} \frac{Q_u m_u + Q_d m_d}{m_u + m_d} - \frac{1}{3\sqrt{3}} \frac{m_d - m_u}{m_u + m_d} \theta_{\pi_3 a} + \frac{1}{3} \theta_{\eta_8 a} + \frac{\sqrt{2}}{3} \theta_{\eta_0 a} \right],$$

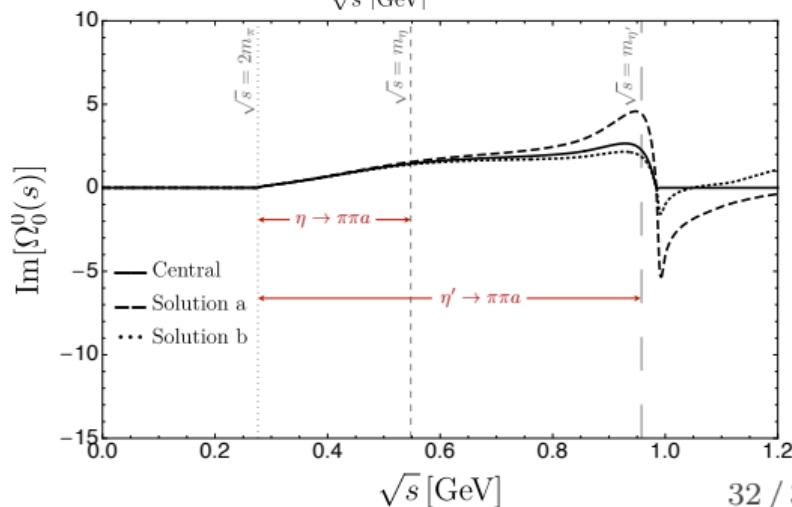
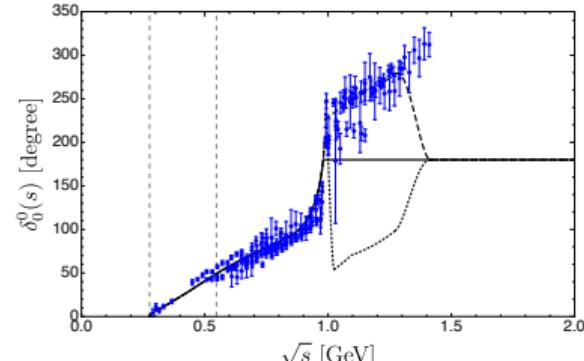
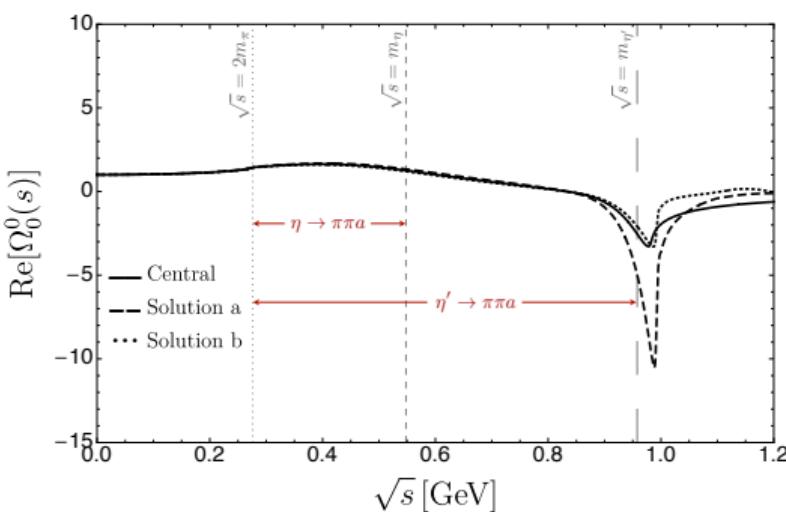
Effects of pion-pion final-state interactions (FSI)

- Unitarity:

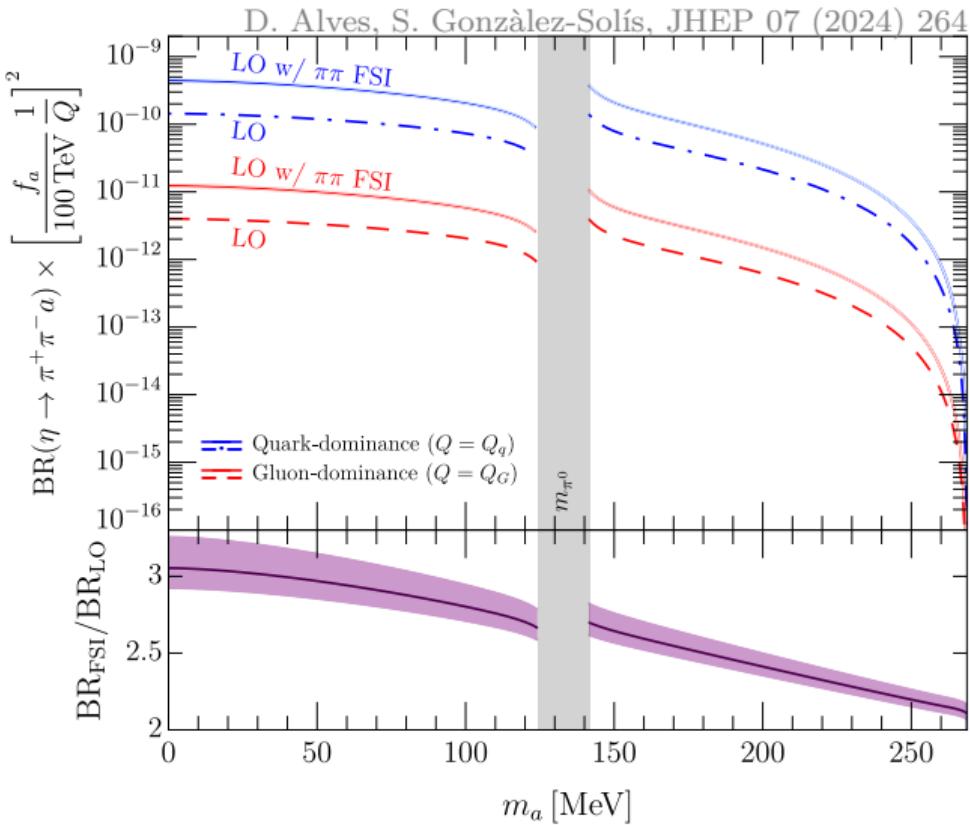
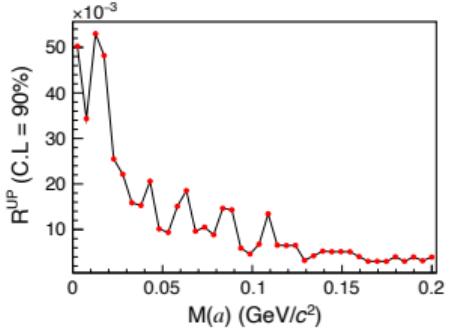

$$\text{disc}\mathcal{A}(s) = 2i\mathcal{A}(s)\sigma_\pi(s)T_0^{0*}(s) = 2i\mathcal{A}(s)\sin\delta_0^0(s)e^{-i\delta_0^0(s)},$$

$$\mathcal{A}(s) = \frac{1}{2i\pi} \int_{4M_\pi^2}^\infty ds' \frac{\text{disc}\mathcal{A}(s')}{s' - s - i\varepsilon}$$

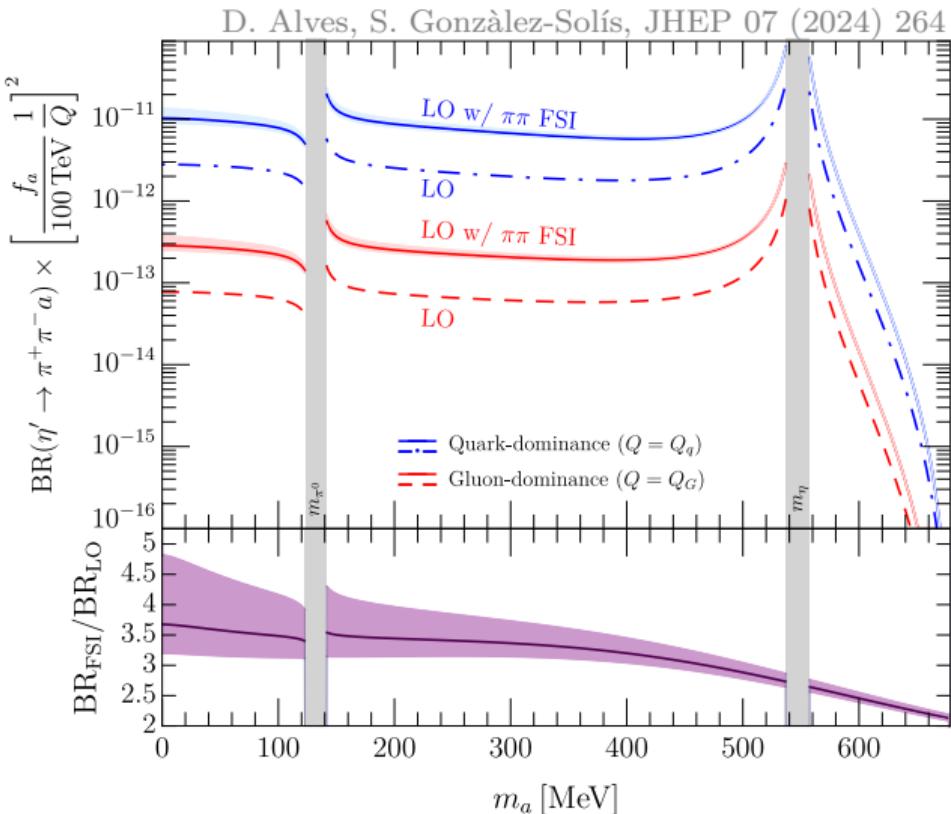
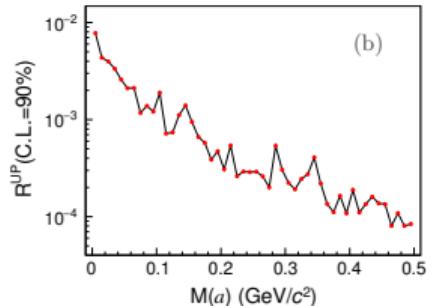
- Analytic solution:




$$\mathcal{A}(s) = \mathcal{A}(\eta \rightarrow 2\pi a)|_{\text{LO}} \times \Omega_0^0(s), \quad \Omega_0^0(s) = \exp \left\{ \frac{s}{\pi} \int_{4M_\pi^2}^\infty ds' \frac{\delta_0^0(s')}{s'(s' - s - i\varepsilon)} \right\},$$

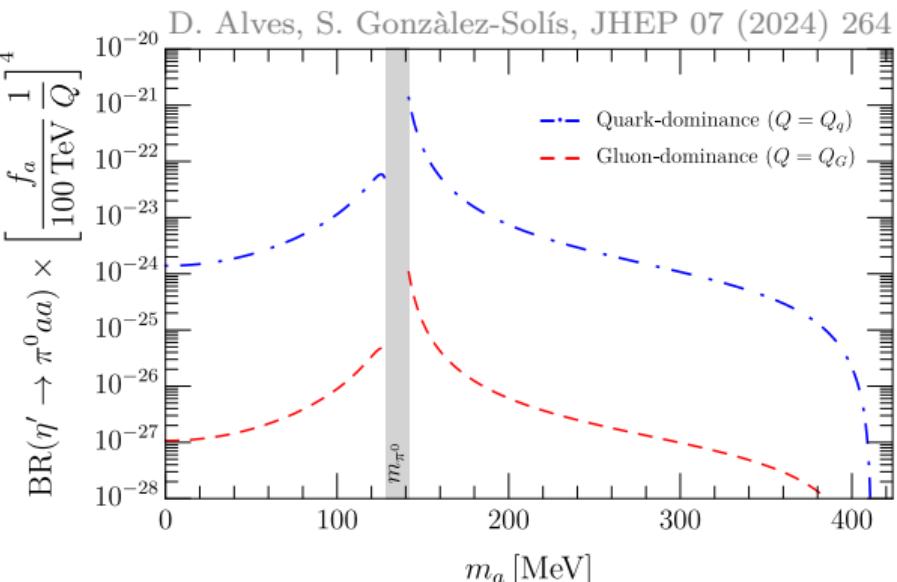
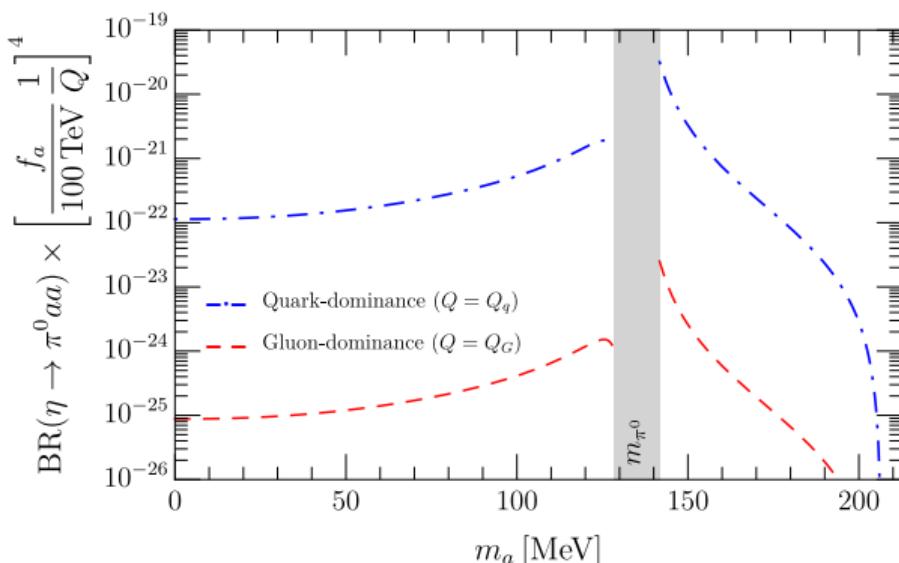
- Diagrammatic interpretation:



Solution of the Omnès function $\Omega_0^0(s)$

$$\Omega_0^0(s) = \exp \left\{ \frac{s}{\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{\delta_0^0(s')}{s'(s' - s - i\varepsilon)} \right\},$$



Branching ratio predictions for $\eta \rightarrow \pi^+ \pi^- a$

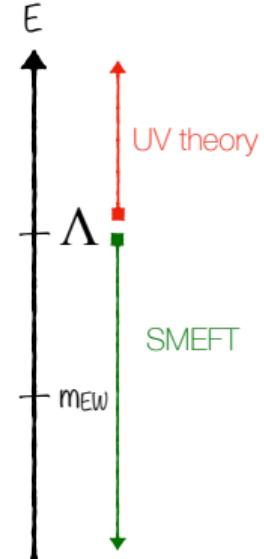
- Two scenarios:
 - Quark-dominance ($Q_G = 0$)
 - Gluon-dominance ($Q_q = 0$)
- Experimental searches in $\eta \rightarrow \pi\pi a \rightarrow \pi\pi\{\gamma\gamma, \ell^+\ell^-\}$ (CMS, JEF, KLOE, REDTOP HADES [talk by K. Prościński])
- First upper bounds from BESIII (2501.10130)



Branching ratio predictions for $\eta' \rightarrow \pi\pi a$

- Two scenarios:
 - Quark-dominance ($Q_G = 0$)
 - Gluon-dominance ($Q_q = 0$)
- Experimental searches in $\eta' \rightarrow \pi\pi a \rightarrow \pi\pi\{\gamma\gamma, \ell^+\ell^-\}$ (CMS, JEF, KLOE, REDTOP, HADES)
- First upper bounds from BESIII (JHEP 07 (2024) 135)

Double production of ALPs in η/η' decays

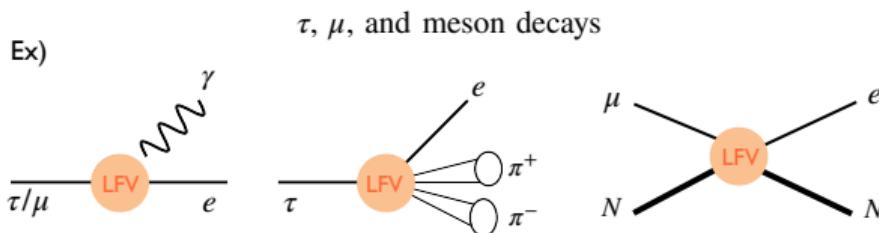
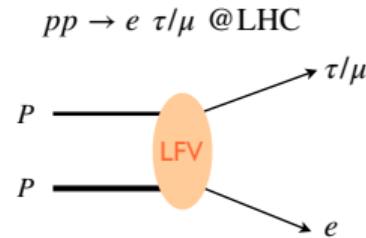
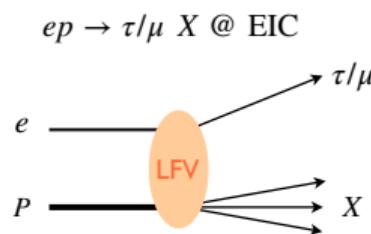
- $\eta/\eta' \rightarrow \pi^0 aa$ decays
- One extra power of $1/f_a$ suppression, $\text{BR} \sim \mathcal{O}(1/f_a^4)$
- $f_a \sim \mathcal{O}(1 - 10)$ GeV to be sensitive probes of ALPs



SMEFT

- The SM is an EFT valid up to some scale Λ , beyond it must be extended
- If we are interested in physics at $E \ll \Lambda$ we can write the low-energy Lagrangian as a series in powers of $1/\Lambda$: SMEFT

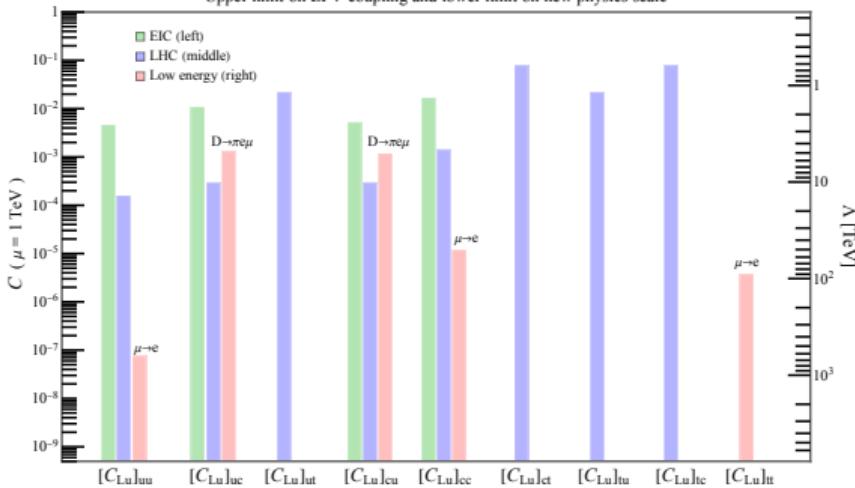
$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}}^{(d=4)} + \sum_i \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(d=6)}$$




- In general $\mathcal{L}_{\text{SMEFT}}^{(d=6)}$ violate all the accidental symmetries and properties of the SM: LFV, CP effects, suppression of FCNC, etc.
- Precision test of forbidden or suppressed processes in the SM are powerful probes of physics BSM

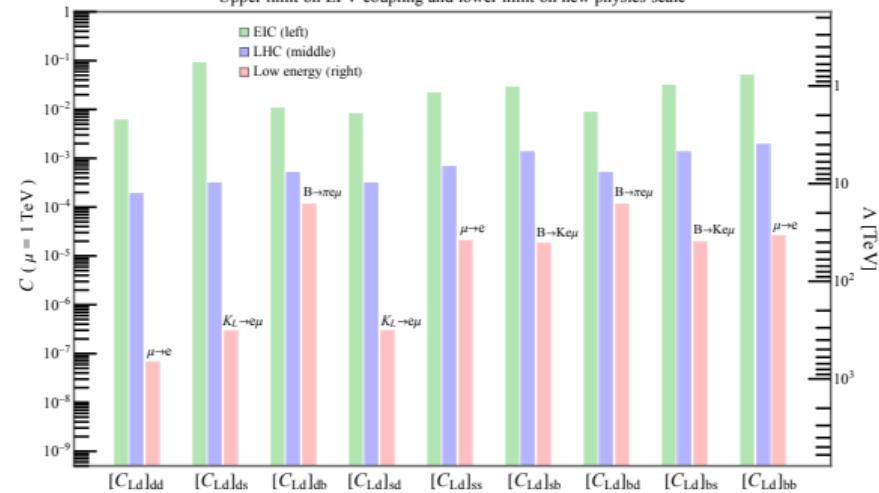
Global analysis of $\mu \rightarrow e$ with SMEFT

- Model-independent analysis of CLFV processes at low-and high-energy

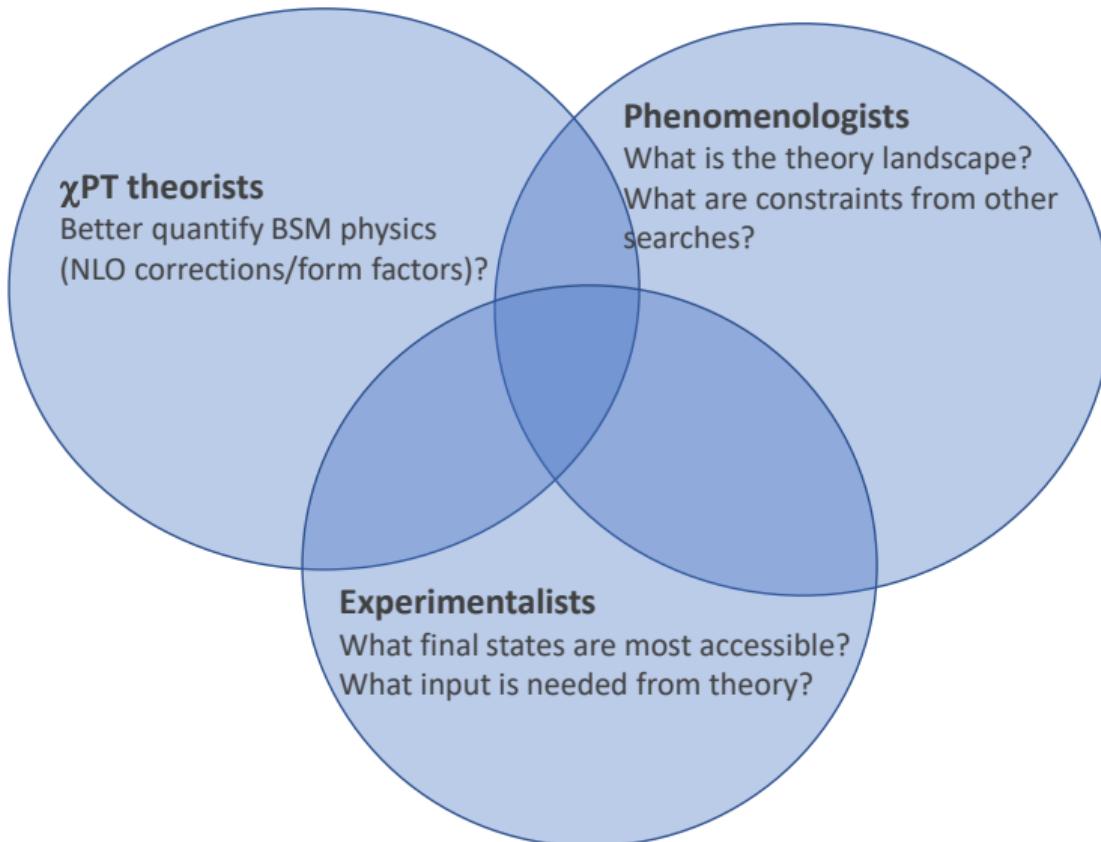
F. Delzanno, K. Fuyuto, S. Gonzàlez-Solís, E. Mereghetti JHEP 07 (2025) 283



Global analysis of $\mu \rightarrow e$ with SMEFT


- Model-independent analysis of CLFV processes at low-and high-energy

F. Delzanno, K. Fuyuto, S. González-Solís, E. Mereghetti JHEP 07 (2025) 283


Upper limit on LFV coupling and lower limit on new physics scale

Upper limit on LFV coupling and lower limit on new physics scale

Conclusions

Vector meson exchange contributions

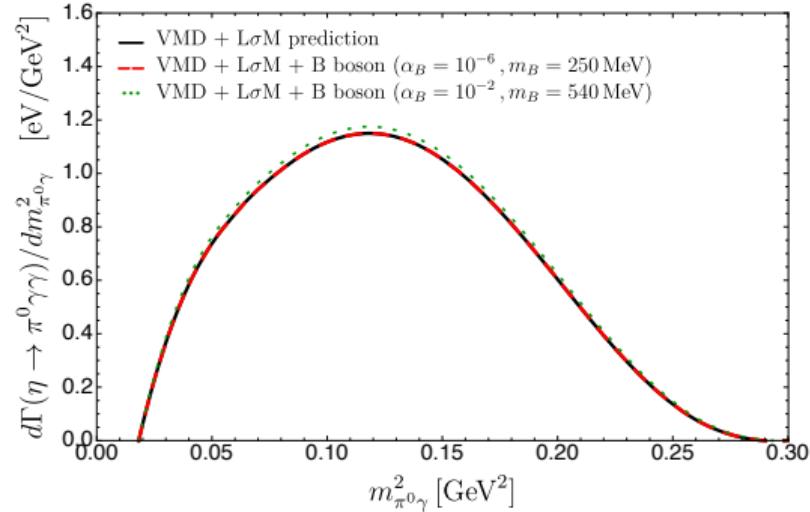
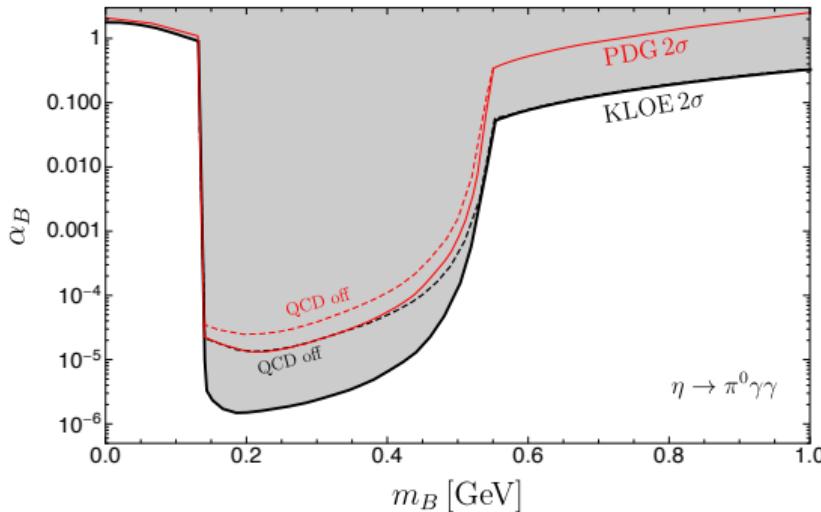
- Six **diagrams** corresponding to the exchange of $V = \rho^0, \omega, \phi$

$$\mathcal{A}_{\eta \rightarrow \pi^0 \gamma \gamma}^{\text{VMD}} = \sum_{V=\rho^0, \omega, \phi} g_{V\eta\gamma} g_{V\pi^0\gamma} \left[\frac{(P \cdot q_2 - m_\eta^2)\{a\} - \{b\}}{D_V(t)} + \left\{ \begin{array}{l} q_2 \leftrightarrow q_1 \\ t \leftrightarrow u \end{array} \right\} \right],$$

- Mandelstam variables and Lorentz structures given by:

$$t, u = (P - q_{2,1})^2 = m_\eta^2 - 2P \cdot q_{2,1},$$

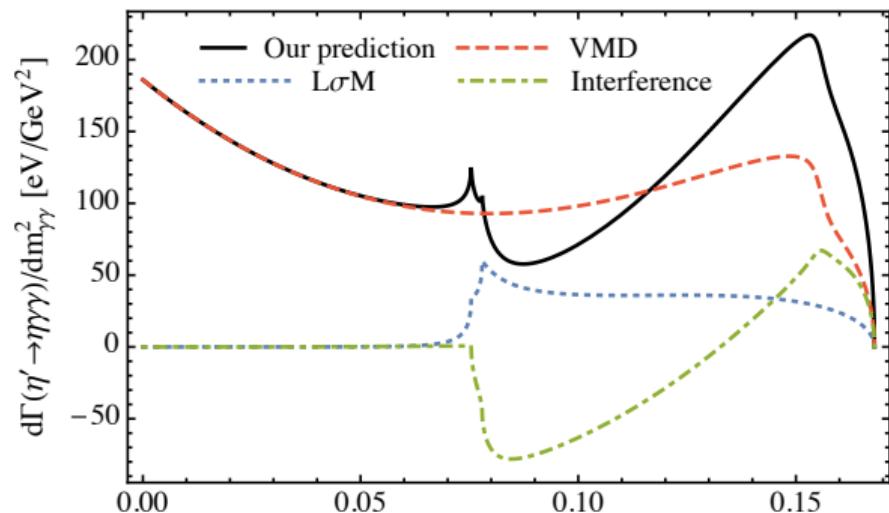
$$\{a\} = (\epsilon_1 \cdot \epsilon_2)(q_1 \cdot q_2) - (\epsilon_1 \cdot q_2)(\epsilon_2 \cdot q_1),$$



$$\begin{aligned} \{b\} = & (\epsilon_1 \cdot q_2)(\epsilon_2 \cdot P)(P \cdot q_1) + (\epsilon_2 \cdot q_1)(\epsilon_1 \cdot P)(P \cdot q_2) \\ & - (\epsilon_1 \cdot \epsilon_2)(P \cdot q_1)(P \cdot q_2) - (\epsilon_1 \cdot P)(\epsilon_2 \cdot P)(q_1 \cdot q_2) \end{aligned}$$

- The decays $\eta' \rightarrow \{\pi^0, \eta\} \gamma \gamma$ are formally identical: $g_{V\eta\gamma} g_{V\pi^0\gamma} \rightarrow g_{V\eta'\gamma} g_{V\{\pi^0, \eta\}\gamma}$

$\pi^0\gamma$ mass distribution

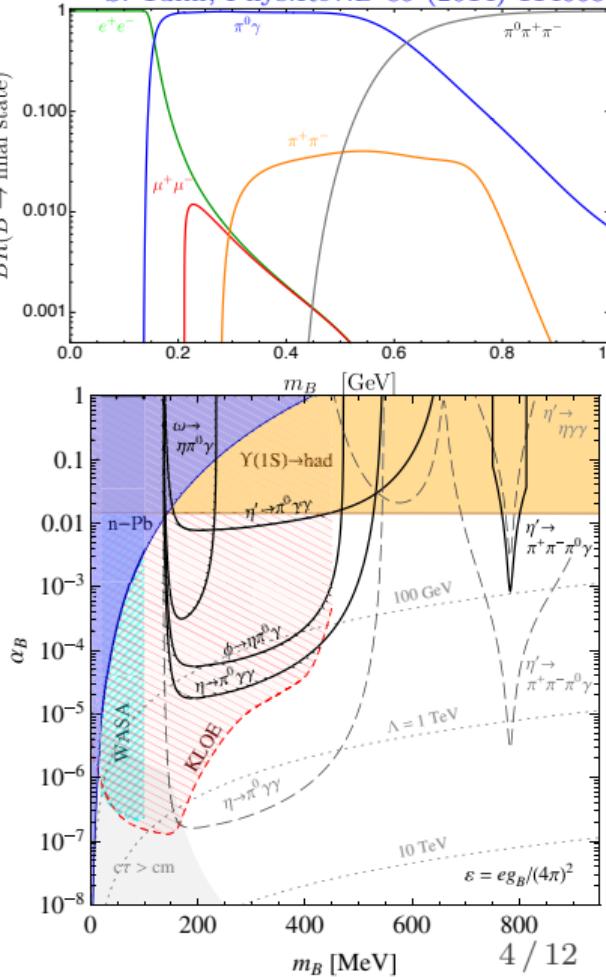
- These constraints would make a B boson signature suppressed


$$\Gamma(\eta \rightarrow \pi^0\gamma\gamma) \propto \int \frac{\alpha_B^2 dt}{|\mathcal{D}_B(t)|^2} \rightarrow \frac{\alpha_B^2 \pi}{m_B \Gamma_B(m_B^2)} .$$

- Experimental $\pi^0\gamma$ distribution will be very welcome (JEF?)

$\eta' \rightarrow \eta\gamma\gamma$ predictions

- 1st BR measurement by BESIII, $BR = 8.25(3.41)(0.72) \times 10^{-5}$ or $BR < 1.33 \times 10^{-4}$ at 90% C.L. ([Ablikim *et. al.* Phys.Rev.D 100, 052015 \(2019\)](#))
- Our theoretical predictions $BR = 1.17(8) \times 10^{-4}$
([R. Escribano, S. G-S, R. Jora, E. Royo, Phys.Rev.D 102, 034026 \(2020\)](#))
 - VMD predominates (91% of the signal)
 - Substantial scalar meson effects (16%)
 - Interference between scalar and vector mesons (7%)


- We look forward to the release of the $m_{\gamma\gamma}$ spectrum

Previous limits on α_B and m_B

- New boson from a new $U(1)_B$ gauge symmetry

$$\mathcal{L}_{\text{int}} = \left(\frac{1}{3} \mathbf{g}_B + \mathbf{e} Q_q e \right) \bar{q} \gamma^\mu q B_\mu - \mathbf{e} \bar{\ell} \gamma^\mu \ell B_\mu ,$$

- New gauge coupling: $\alpha_B = g_B^2 / 4\pi$,
- B is a singlet under isospin: $\Rightarrow B$ is **ω -meson** like
- Assuming **Narrow-Width** Approximation:
 $\text{BR}(\eta \rightarrow \pi^0 \gamma \gamma) = \text{BR}(\eta \rightarrow B \gamma) \times \text{BR}(B \rightarrow \pi^0 \gamma)$
- Assuming **zero** SM contribution
- $\text{BR}(\eta \rightarrow \pi^0 \gamma \gamma) < \text{BR}_{\text{exp}}$ at 2σ
 - $\text{BR}(\eta \rightarrow \pi^0 \gamma \gamma)_{\text{exp}} = 2.21(53) \times 10^{-4}$
 - $\text{BR}(\eta' \rightarrow \pi^0 \gamma \gamma)_{\text{exp}} < 8 \times 10^{-4}$ (90% C.L.)
 - $\text{BR}(\eta' \rightarrow \eta \gamma \gamma)_{\text{exp}}$ no data

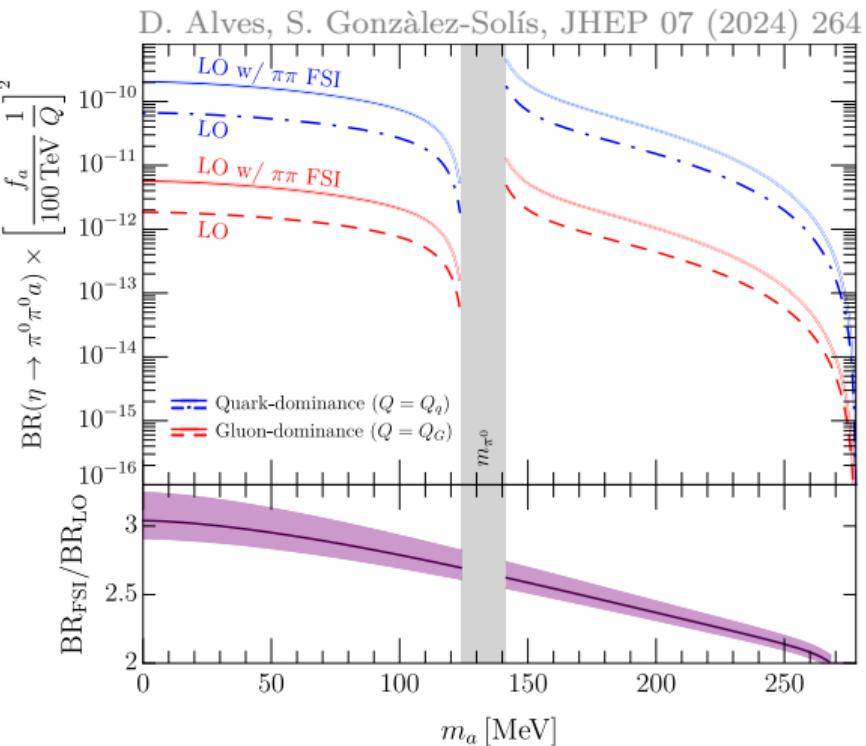
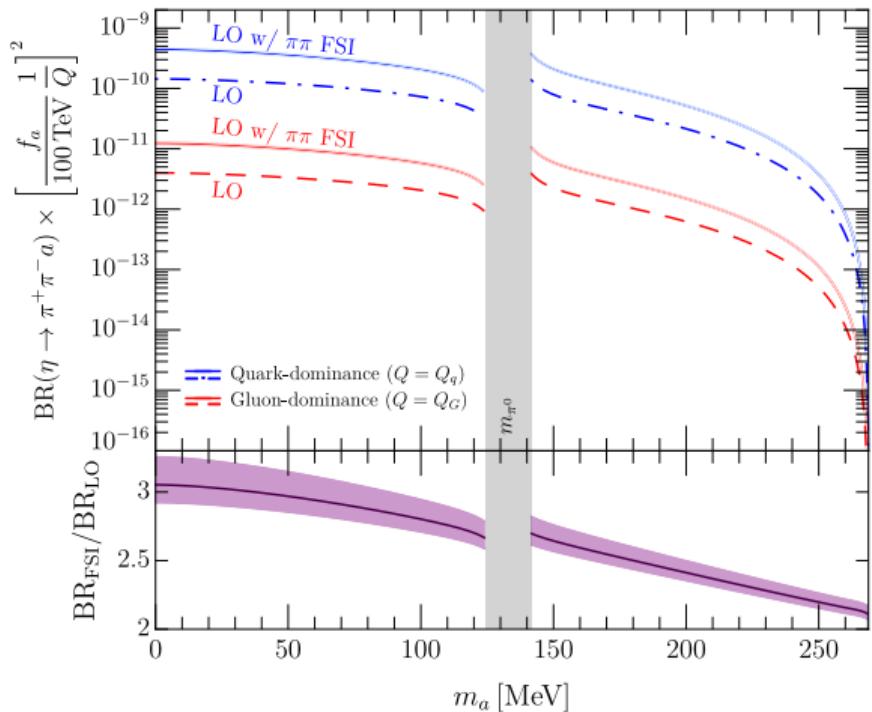
Dark particles in η/η' decays

BSM particle	Decay mode	Signal channel	Search strategy
Dark photon (A')	$\eta/\eta' \rightarrow \gamma^{(*)} A'$	$A' \rightarrow \ell^+ \ell^-$ $A' \rightarrow \pi^+ \pi^-$	Bump-hunt in $d\Gamma/dm_{\ell\ell}$ Bump-hunt in $d\Gamma/dm_{\pi\pi}$
Leptophobic boson (B)	$\eta \rightarrow \gamma B$	$B \rightarrow \gamma \pi^0$	Enhancement in $m_{\pi^0 \gamma}$
		$B \rightarrow \pi^+ \pi^-$	Isospin suppressed
	$\eta' \rightarrow \gamma B$	$B \rightarrow \gamma \pi^0, \pi^+ \pi^-, \pi^+ \pi^- \pi^0, \gamma \eta$	Enhancement in $m_{\pi^0 \gamma}$
ALPs (a)	$\eta \rightarrow \pi \pi a$	$a \rightarrow \gamma \gamma, \ell^+ \ell^- (\ell = e, \mu)$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma}$
	$\eta' \rightarrow \pi \pi a$	$a \rightarrow \gamma \gamma, \ell^+ \ell^-, \pi^+ \pi^- \gamma, 3\pi$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma}$
	$\eta^{(\prime)} \rightarrow \ell^+ \ell^-$		$\eta^{(\prime)}$ - a mixing
Scalar boson (S)	$\eta/\eta' \rightarrow \pi^0 S$	$S \rightarrow \gamma \gamma, \ell^+ \ell^-, \pi \pi$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma}$
	$\eta' \rightarrow \eta S$	$S \rightarrow \gamma \gamma, \ell^+ \ell^-, \pi \pi$	Bump-hunt in $d\Gamma/dm_{\gamma\gamma}$

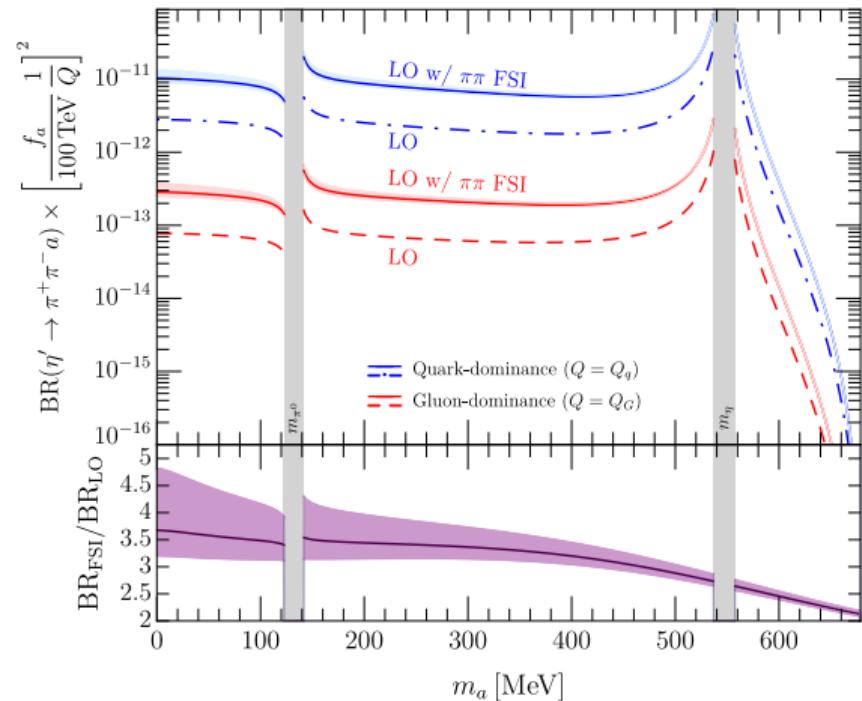
Lagrangian for ALPs coupled to QCD

- “Derivative basis”: ALPs with gluon and derivative couplings

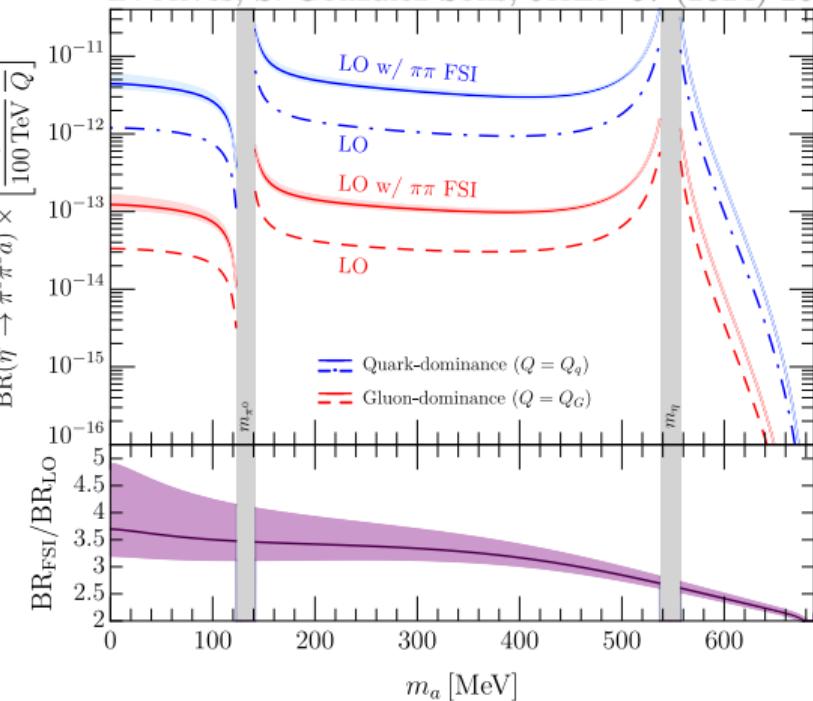
$$\begin{aligned}\mathcal{L}_{\text{ALP}} = & \mathcal{L}_{\text{QCD}} + \frac{1}{2} (\partial_\mu a) (\partial^\mu a) - \frac{1}{2} \textcolor{red}{M}_a^2 a^2 \\ & - \left(Q_G + \sum_{q=u,d,s} Q_q \right) \frac{\alpha_s}{8\pi} \frac{a}{\textcolor{red}{f}_a} G_{\mu\nu} \tilde{G}^{\mu\nu} + \frac{\partial_\mu a}{\textcolor{red}{f}_a} \sum_{q=u,d,s} \frac{Q_q}{2} \bar{q} \gamma^\mu \gamma^5 q,\end{aligned}$$

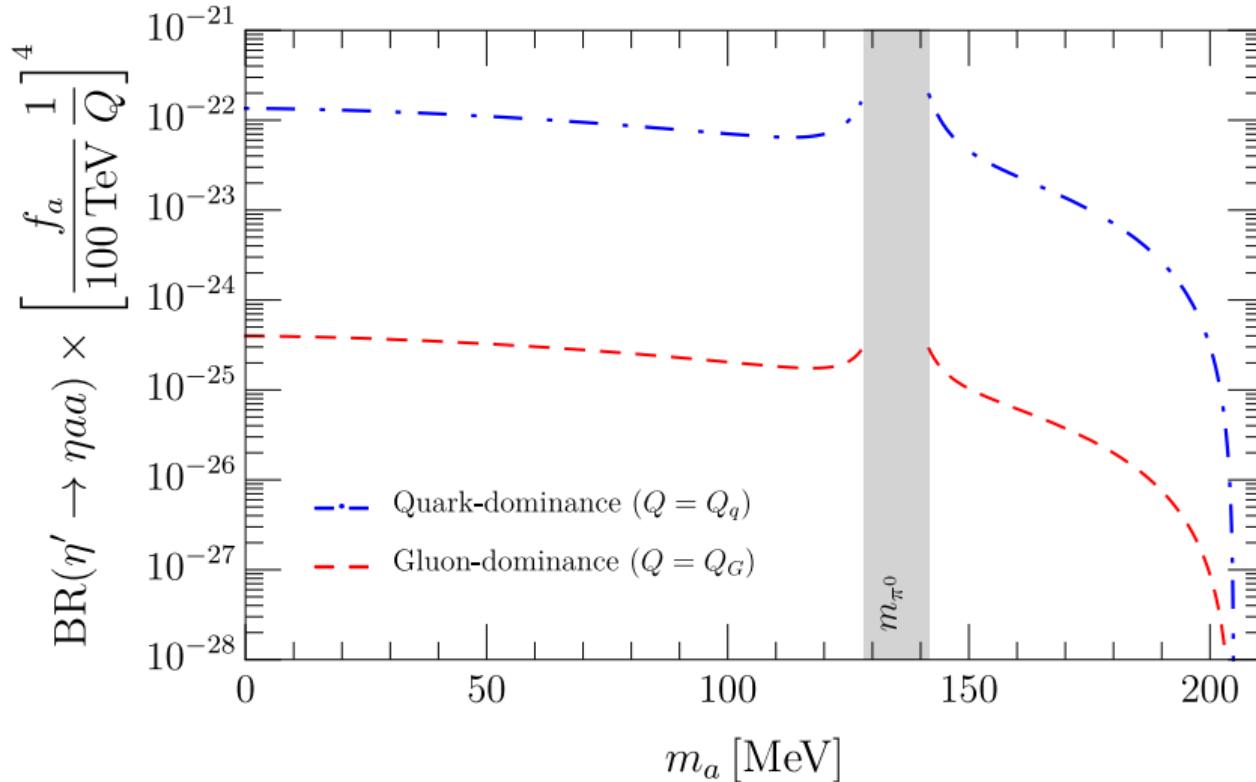


$\textcolor{red}{M}_a^2$: PQ contribution to the mass, $\textcolor{red}{f}_a$: axion decay constant, $Q_{q,G}$: PQ charges

- “Yukawa basis” (this work, at GeV scale): ALP with gluon and mass couplings

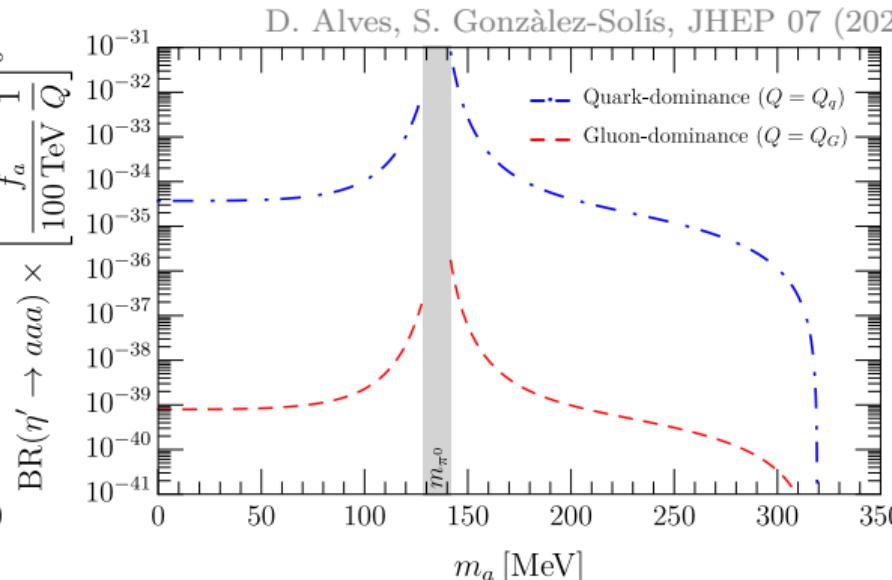
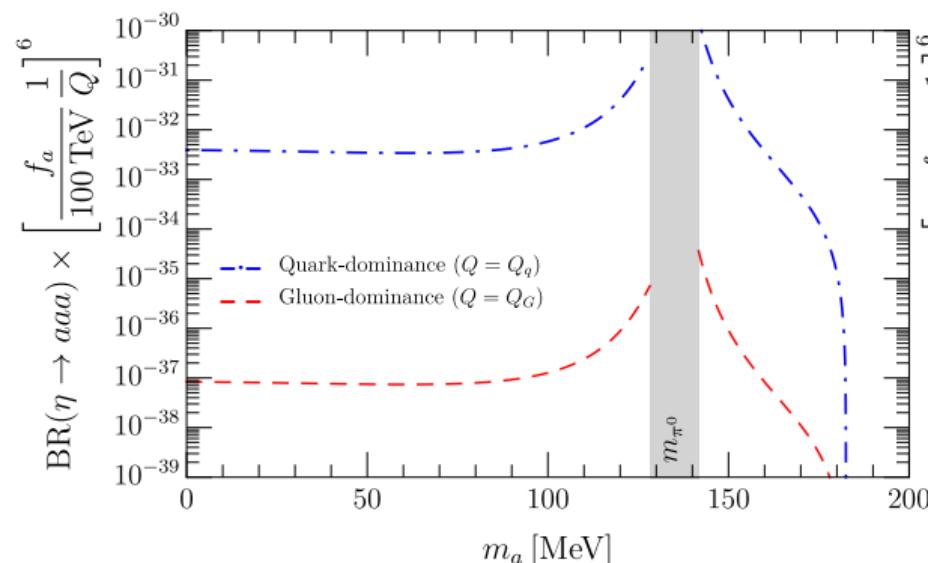

$$\mathcal{L}_{\text{ALP}} = \mathcal{L}_{\text{QCD}} + \frac{1}{2} (\partial_\mu a) (\partial^\mu a) - \frac{1}{2} \textcolor{red}{M}_a^2 a^2 - Q_G \frac{\alpha_s}{8\pi} \frac{a}{\textcolor{red}{f}_a} G_{\mu\nu} \tilde{G}^{\mu\nu} + \sum_{q=u,d,s} m_q \bar{q} \left(e^{i Q_q \frac{a}{\textcolor{red}{f}_a} \gamma_5} \right) q,$$

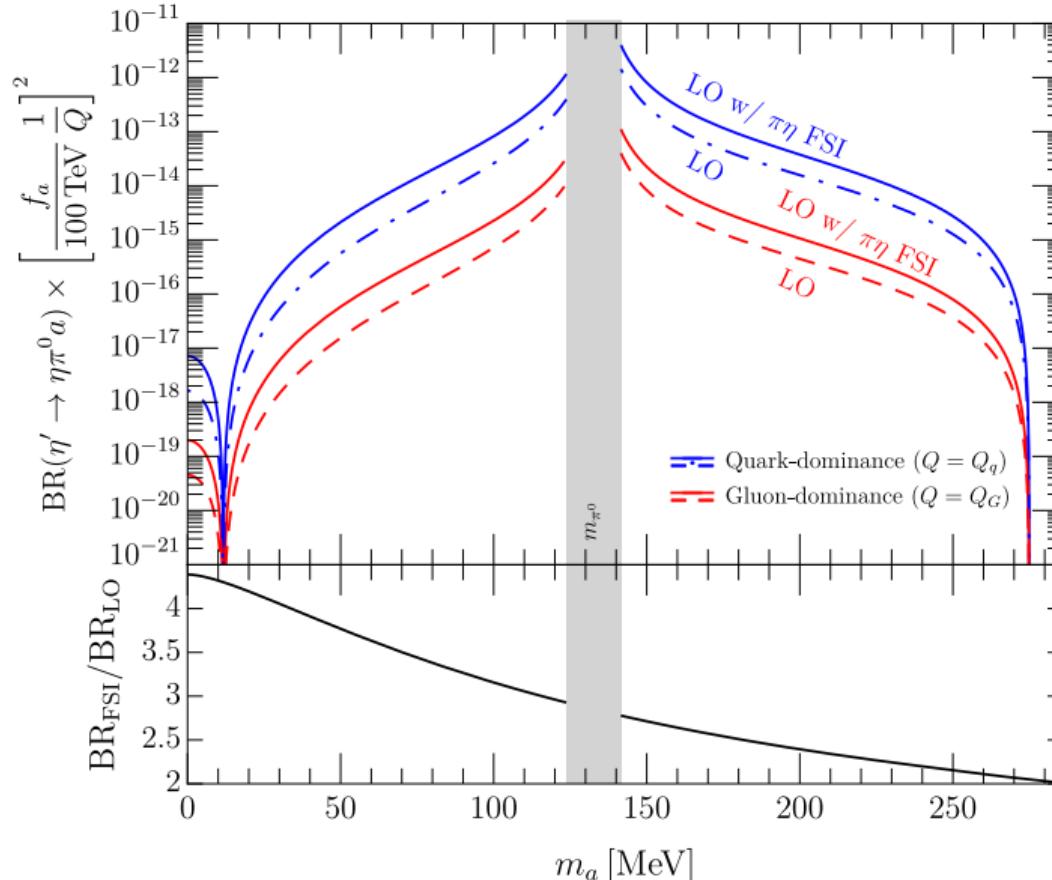
- Equivalent bases (related via chiral rotations of the quarks) if weak interactions are neglected
- The heavy-flavor c, b, t quarks contributions are absorbed in $Q_G \rightarrow Q_G + Q_{t,b,c}$


Branching ratio predictions for $\eta \rightarrow \pi\pi a$ ($\pi\pi = \pi^+\pi^-, \pi^0\pi^0$)


Branching ratio predictions for $\eta' \rightarrow \pi\pi a$

D. Alves, S. González-Solís, JHEP 07 (2024) 264


Double production of ALPs in η/η' decays

Triple production of ALPs in η/η' decays

- $\eta/\eta' \rightarrow aaa$ decays
- $\text{BR} \sim \mathcal{O}(1/f_a^6)$
- $f_a \sim \mathcal{O}(1)$ GeV to be sensitive probes of ALPs

$\eta' \rightarrow \eta\pi^0 a$

Other meson decays

BSM particle	Decay mode	Signal channel	Search strategy
ALPs (a)	$K^\pm \rightarrow \pi^\pm a$	$a \rightarrow \gamma\gamma, \ell^+\ell^-$ ($\ell = e, \mu$)	Bump-hunt in $d\Gamma/dm_{\gamma\gamma, \ell\ell}$
	$K^\pm \rightarrow \pi^\pm \pi^0 a$	$a \rightarrow \gamma\gamma, \ell^+\ell^-$ ($\ell = e, \mu$)	Bump-hunt in $d\Gamma/dm_{\gamma\gamma, \ell, \ell}$
	$K_L \rightarrow \pi^0 a$	$a \rightarrow \gamma\gamma, \ell^+\ell^-$ ($\ell = e, \mu$)	Bump-hunt in $d\Gamma/dm_{\gamma\gamma, \ell\ell}$
	$K_L \rightarrow \pi^0 \pi^0 a$	$a \rightarrow \gamma\gamma, \ell^+\ell^-$ ($\ell = e, \mu$)	Bump-hunt in $d\Gamma/dm_{\gamma\gamma, \ell\ell}$
	$K_L \rightarrow \pi^+ \pi^- a$	$a \rightarrow \gamma\gamma, \ell^+\ell^-$ ($\ell = e, \mu$)	Bump-hunt in $d\Gamma/dm_{\gamma\gamma, \ell\ell}$
	$B^\pm \rightarrow \pi^\pm a$	$a \rightarrow \ell^+\ell^-, 3\pi, \eta\pi\pi, KK\pi$	Higher ALP masses
	$B^\pm \rightarrow K^\pm a$	$a \rightarrow \ell^+\ell^-, 3\pi, \eta\pi\pi, KK\pi$	Higher ALP masses
	$B \rightarrow K^* a$	$a \rightarrow \ell^+\ell^-, 3\pi, \eta\pi\pi, KK\pi$	Higher ALP masses
	$\omega/\phi/J/\psi \rightarrow \pi^0 \pi^0 a$	$a \rightarrow \gamma\gamma, \ell^+\ell^-$ ($\ell = e, \mu$)	Bump-hunt in $d\Gamma/dm_{\gamma\gamma, \ell\ell}$
	$\omega/\phi/J/\psi \rightarrow \pi^0 \pi^0 a$	$a \rightarrow \pi^+ \pi^- \gamma, 3\pi$	
Dark photon (A')	$\pi^0 \rightarrow \gamma A'$	$A' \rightarrow e^+ e^-$	$e^+ e^-$ resonance
	$\pi^0 \rightarrow \gamma^* A'$	$\gamma^* \rightarrow e^+ e^-, A' \rightarrow e^+ e^-$	$e^+ e^-$ resonance
	$\omega/\phi/J/\psi \rightarrow \pi^0 A'$	$A' \rightarrow \ell^+\ell^-$ ($\ell = e, \mu$)	$\ell^+\ell^-$ resonance
	$\omega/\phi/J/\psi \rightarrow \pi^0 A'$	$A' \rightarrow \pi^+ \pi^-$	$\pi^+ \pi^-$ resonance
Leptophobic boson (B)	$\omega/\phi \rightarrow \eta B$	$B \rightarrow \gamma\pi^0$	Enhancement in $m_{\pi^0\gamma}$