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PART O:
MOTIVATION: FIRST-PRINCIPLES SIMULATIONS OF SCATTERING




AN OVERARCHING GOAL OF NUCLEAR AND HIGH-ENERGY PHYSICS:
FIRST-PRINCIPLES PREDICTIONS FOR SCATTERING PROCESSES

Standard Model




We care about scattering and reaction processes since they can:

) teach us about the internal structure of matter,

Credit: Argonne National Lab €

ii) constrain astrophysical models of stellar evolution and
of terrestrial energy-production mechanisms,
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i) iluminate phases of matter and reveal how matter
evolves under extreme conditions such as post Big Bang,

Early hot univ

- Accelerated
Credit: https://astronuclphysics.info ==

iv) lead to discovery of new symmetries, particles,
and interactions in nature.

Credit: CMS, CERN

A barrier to making first-principles predictions is the quantum, relativistic, and nonperturbative
nature of quantum chromodynamics, the quantum field theory of quarks and gluons!




FIRST-PRINCIPLES PREDICTIONS FOR SCATTERING PROCESSES:
CLASSICAL SIMULATIONS?
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Can we classically simulate scattering of composite particles from the Standard Model? C(c):rlr?:zit(i:ng

Lattice gauge theory methods based on Monte-Carlo sampling in Euclidean (imaginary) time have
enabled this...but only at low energies so far...




SOME EXAMPLES FROM MY PAST AND CURRENT WORK WITHIN 4§

Wagman, ZD et al (NPLQCD),
Phys.Rev.D96,114510 (2017).
Illa, ZD et al (NPLQCD),
Phys. Rev. D103, 5, 054508
(2021).

Amarasinghe, ZD et al
(NPLQOCD), Phys. Rev. D 107,
094508 (2023).
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Chang, ZD et al (NPLQCD), Phys.
Rev. Lett. 120, 5, 152002 (2018).
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Savage et (ZD) [NPLQCD], Phys. Rev. +
Lett. 119,062002 (2017).[Highlighted
by Department of Energy]
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ZD, Detmold, Fu, Grebe, Jay, Murphy, Oare,
Shanahan, Wagman, arXiv:2402.09362 [hep-lat].
See also our two-neutrino studies in Tiburzi
et al (ZD) (NPLQCD), Phys. Rev. D96, 054505
(2017)and Shanahan, ZD et al (NPLQCD), Phys.
Rev. Lett. 119, 062003 (2017).
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What about high energies, like events at the Large Hadron Collider or the Relativistic Classic
Computing

Heavy-lon Collider?

There are mainly two issues...

i) making complicated states, i.e., high-energy protons, or heavy ions, etc.,
ii) imaginary time nature of the classical Monte-Carlo calculations...no access to states as a
function of Minkowski time elapsed after the collision!




THREE FEATURES MAKE LATTICE-QCD CALCULATIONS OF NUCLEI HARD:

i) The complexity of systems grows factorially with
the number of quarks.

Detmold and Orginos (2013)
Detmold and Savage (2010)
Doi and Endres (2013)

iii) Excitation gaps of nuclei are much smaller
than the QCD scale.

Beane at al (NPLQCD) (2009)

Beane, Detmold, Orginos, Savage (2011)
ZD (2018)

Briceno, Dudek and Young (2018)
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SIGN PROBLEM MAKES CONVENTIONAL LATTICE-GAUGE-THEORY
METHODS INTRACTABLE.

No access to real-time nonequilibrium dynamics of matter in heavy-ion collisions or after the
Big Bang...

(\i\ CMS Expuriresd m LG, CERN
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..and to a wealth of dynamical response functions, transport properties, parton distribution

functions, etc.

Path integral formulation: Hamiltonian evolution:

G'S[U,QCY] Ut) = e !




FIRST-PRINCIPLES PREDICTIONS FOR SCATTERING PROCESSES:
QUANTUM SIMULATIONS?
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Bauer, ZD, Klco, and Savage, Nature
Rev. Phys. 5 (2023) 7, 420-432.




PART I:
BASIC ELEMENTS OF QUANTUM SIMULATION OF SCATTERING




STUDY HIGH-ENERGY SCATTERING VIA QUANTUM SIMULATION?
THE JORDAN-LEE-PRESKILL STRATEGY

1. State (wave-packet) preparation 2. Time evolution: scattering 3. Measurement of the final state
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Interacting theory

Adiabatic evolution

Jordan, Lee, Preskill, Science 336, 1130-1133 (2012).

Figure from: ZD, Hseih, and Kadam, arXiv:2402.00840 [quant-ph].




OR MORE GENERALLY...

Prepare the

initial state

Evolve with

e—itH

Measure
observables




Prepare the
initial state




EXAMPLES OF (GROUND-)STATE PREPARATION METHODS

- Adiabatic state preparation: Prepare the ground state of a simple
Hamiltonian, then adiabatically turn the Hamiltonian to that of the
target Hamiltonian. Requires a non-closing energy gap.

E 1




EXAMPLES OF (GROUND-)STATE PREPARATION METHODS
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- Adiabatic state preparation: Prepare the ground state of a simple \\\ ///
Hamiltonian, then adiabatically turn the Hamiltonian to that of the /><i\
target Hamiltonian. Requires a non-closing energy gap. Ve N

~ Imaginary time evolution: Start with an easily prepared state and E ™
evolve with imaginary time operator to settle in the ground state.
Requires implementing a non-unitary operator which can be costly.




EXAMPLES OF (GROUND-)STATE PREPARATION METHODS

- Adiabatic state preparation: Prepare the ground state of a simple
Hamiltonian, then adiabatically turn the Hamiltonian to that of the
target Hamiltonian. Requires a non-closing energy gap.

- Imaginary time evolution: Start with an easily prepared state and
evolve with imaginary time operator to settle in the ground state.
Requires implementing a non-unitary operator which can be costly.

o Variational quantum eigensolver (VQE): Use the variational
principle of quantum mechanics and classical processing to
minimize the energy of a non-trivial ansatz wavefunction generated
by a quantum circuit. The optimized circuit corresponding to the
minimum energy generates an approximation to ground-state
wavefunction. Can fail if stuck in local minima manifolds or
manifolds with exponentially small gradients in qubit number.
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EXAMPLES OF (GROUND-)STATE PREPARATION METHODS

~ Adiabatic state preparation: Prepare the ground state of a simple
Hamiltonian, then adiabatically turn the Hamiltonian to that of the
target Hamiltonian. Requires a non-closing energy gap.

- Imaginary time evolution: Start with an easily prepared state and
evolve with imaginary time operator to settle in the ground state.
Requires implementing a non-unitary operator which can be costly.

- Variational quantum eigensolver (VQE): Use the variational
principle of quantum mechanics and classical processing to
minimize the energy of a non-trivial ansatz wavefunction generated
by a quantum circuit. The optimized circuit corresponding to the
minimum energy generates an approximation to ground-state
wavefunction. Can fail if stuck in local minima manifolds or
manifolds with exponentially small gradients in qubit number.

- Classically computed states: Use classical computing such as
Monte Carlo, Tensor Networks, Neural Networks to learn the state
or features of the state when possible, for a direct implementation
of the state as a quantum circuit, or as close enough state to the
ground state as a starting point of the above algorithms so as to

achieve more efficient implementations. |cupta, wnite, zp,
arXiv:2506.02313 [quant-ph].
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: | Q> Image credit:
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DIFFERENT APPROACHES TO QUANTUM SIMULATION

Analog

Evolve with
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DIFFERENT APPROACHES TO QUANTUM SIMULATION

Analog
L Degrees of freedom in the
Evolve with simulator: fermions, bosons,
—itH spins (of various dimensions), etc.
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DIFFERENT APPROACHES TO QUANTUM SIMULATION

Analog

Evolve with

e—itH

The engineered simulator
Hamiltonian that mimics the

Hamiltonian of target system.

Some of the leading analog simulators are: cold-atoms in optical lattices,

Rydberg atoms with optical tweezers, trapped ions, superconducting
circuits (including when coupled to photonics systems), etc.

CREDIT: ANDREW SHAW, UNIVERSITY OF MARYLAND

Eugene Demler lectures,
Harvard University.




DIFFERENT APPROACHES TO QUANTUM SIMULATION

Digital




DIFFERENT APPROACHES TO QUANTUM SIMULATION

Only qubits as DOF. Only
universal single- and two-
qubit operations allowed.

Digital

........




DIFFERENT APPROACHES TO QUANTUM SIMULATION

Example of a digital scheme: Digital

—1H 10t
H=Hi +Hy+ -

Each of these can now potentially
be decomposed to a universal
set of single and two-qubit gates.

e—ng(St I
t = Npot

Trotter-Suzuki expansion:
) —q _ 5 t/ot
o—i(Hi+Hat )t _ e iH16t ,—iHa0t ] / +O(61)?)

Other digitalization schemes also exist.

Andrew Childs lectures on Quantum
Simulation, University of Maryland.

...other methods exist too.




DIFFERENT APPROACHES TO QUANTUM SIMULATION
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EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these
can be measured directly in the computational basis, but others need a change of basis or other
dedicated quantum circuits to access them.

~ Energy and momentum, particle and charge (both locally
and globally)




EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these
can be measured directly in the computational basis, but others need a change of basis or other

dedicated quantum circuits to access them.

© Energy and momentum, particle and charge (both locally
and globally)

© Various correlation functions (both static and dynamical)

Image credit:
Connor Powers (UMD)
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EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these
can be measured directly in the computational basis, but others need a change of basis or other
dedicated quantum circuits to access them.

~ Energy and momentum, particle and charge (both locally
and globally)

~ Various correlation functions (both static and dynamical)

~ Asymptotic S-matrix elements (assuming asymptotic final
states are reached):

» Exclusive processes: can be obtained from overlaps
* Inclusive processes: can be obtained from two-current

correltor via optical theorem Sy
* Semi-inclusive processes: can be obtained using :

projectors | )




EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these
can be measured directly in the computational basis, but others need a change of basis or other
dedicated quantum circuits to access them.

~ Energy and momentum, particle and charge (both locally
and globally)

~ Various correlation functions (both static and dynamical)

~ Asymptotic S-matrix elements (assuming asymptotic final
states are reached):
» Exclusive processes: can be obtained from overlaps
* Inclusive processes: can be obtained from two-current
correltor via optical theorem
* Semi-inclusive processes: can be obtained using
projectors
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EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these
can be measured directly in the computational basis, but others need a change of basis or other
dedicated quantum circuits to access them.

~ Energy and momentum, particle and charge (both locally
and globally)

~ Various correlation functions (both static and dynamical)

~ Asymptotic S-matrix elements (assuming asymptotic final
states are reached):
» Exclusive processes: can be obtained from overlaps
* Inclusive processes: can be obtained from two-current
correltor via optical theorem

* Semi-inclusive processes: can be obtained using - 2 £ o] .
: - 2 EE 55 .58 E
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> Entanglement measures such as estimates of entanglement

spectrum (which can signal thermalization or lack of). image credit
Niklas Mueller (UMD/UW)

Observables

Fidelities and full state tomography are hard (they demand exponentially large number of measurements).




PART II:
TOWARD DIGITAL QUANTUM SIMULATIONS OF
SCATTERING




FIRST STEPS TOWARD COLLISION/REACTION PROCESSES

e N (
f decay in (1+1)D QCD $\M/2 . Ovpp decay in (1+1)D QCD ‘
(Quantinuum) ‘ %m\? (lonQ)
Farrell, Chernyshev, Powell, \‘ Chernyshev et al,
Zemlevskiy, Illa, and Savage, “ arXiv:2506.05757 [quant-ph].
Phys. Rev. D 107, 054513 (2023).
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FIRST STEPS TOWARD NUCLEAR REACTION PROCESSES

Fermion-antifermion scattering in the (1+1)D
Thirring model (IBM)

Tavernelli, Quantum 9,

Chai, Crippa, Jansen, Kiihn, Pascuzzi, Tacchino,
1638 (2025).
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Scattering in a (1+1)D Ising field theory (IBM)

Farrell, Zemlevskiy, Illa, Preskill,
arXiv:2505.03111 [quant-ph].
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See also Zemlevskiy, arXiv:2411.02486 [quant-ph]
for a (1+1)D scalar field theory example.




FIRST STEPS TOWARD HADRONIC WAVE PACKETS
AND THEIR COLLISIONS
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FIRST STEPS TOWARD HADRONIC WAVE PACKETS
AND THEIR COLLISIONS
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Hadron wave packet in a (1+1)D Z, gauge theory (12 staggered sites with Quantinuum, minimal noise mitigation):
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Hadron scattering in a (1+1)D Z, gauge theory (lonQ)
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Hadron scattering in a (1+1)D Z, gauge theory (lonQ)
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Hadron scattering in a (1+1)D Z, gauge theory (lonQ)

Schuhmacher, Su, Osborne, Gandon, Halimeh, Tavernelli, arXiv:2505.20387 [quant-ph].
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Hadron scattering in a (1+1)D Z, gauge theory (lonQ)
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OUR STRATEGY COMPARED WITH JORDAN-LEE-PRESKILL
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OUR STRATEGY COMPARED WITH JORDAN-LEE-PRESKILL
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ZD, Hsieh, and Kadam, Quantum 8, 1520 (2024) and arXiv:2505.20408 [quant-ph].

Beside Jordan, Lee, Preskill, Science 336, 1130-1133 (2012), check out other recent interesting digital algorithms for
hadronic wave-packet creation in: Turco, Quinta, Seixas, and Omar, arXiv:2305.07692 [quant-ph], Kreshchuk, Vary, Love,
arXiv:2310.13742 [quant-ph], Chai, Crippa, Jansen, Kiihn, Pascuzzi, Tacchino, and Tavernelli, arXiv:2312.02272 [quant-ph],
Farrell, Illa, Ciavarella, and Savage, arXiv:2401.08044 [quant-ph].




OUR TESTING GROUND:
Z, LATTICE GAUGE THEORY COUPLED TO FERMIONS IN 1+1 D
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OUR TESTING GROUND:
Z, LATTICE GAUGE THEORY COUPLED TO FERMIONS IN 1+1 D
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AN ANSATZ FOR THE MESON WAVE PACKET
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HOW WELL DOES THE ANSATZ WORK?
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ZD, Hsieh, and Kadam, arXiv:2402.00840 [quant-ph].




OUR QUANTUM CIRCUIT FOR HADRON SCATTERING
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SOME EMULATOR AND HARDWARE RESULTS
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lonQ Forte quantum processor with 32 qubits



HOW WELL CAN WE PREPARE TWO WAVE PACKETS?
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HOW WELL CAN WE PREPARE TWO WAVE PACKETS?
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HOW WELL CAN WE PREPARE TWO WAVE PACKETS?
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HOW WELL CAN WE PREPARE TWO WAVE PACKETS?
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HOW FAR CAN WE EVOLVE THE TWO WAVE PACKETS?
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HOW FAR CAN WE EVOLVE THE TWO WAVE PACKETS?
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HOW FAR CAN WE EVOLVE THE TWO WAVE PACKETS?
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WHAT ABOUT RETURN PROBABILITY (A DIAGONAL ENTRY OF S-MATRIX)?
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WHAT ABOUT RETURN PROBABILITY (A DIAGONAL ENTRY OF S-MATRIX)?
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WHAT ABOUT LOCAL QUANTITIES AT TIMES R(t) DEVIATES?
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PART IlI:
TOWARD ANALOG QUANTUM SIMULATIONS OF
SCATTERING
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A cold-atom simulation proposal for scattering

in an Ising model with a Z, LGT dual
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Surace and Lerose, New J. Phys. 23, 062001 (2021).
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A cold-atom simulation proposal for scattering

in an Ising model with a Z, LGT dual
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A trapped-ion simulation proposal for scattering
in an Ising model with a Z, LGT dual

Inelastic scattering to unbound
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Evolution and detection
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Bennewitz, Ware, Schuckert, Lerose, Surace,
Belyansky, Morong, Luo, De, Collins, Katz, Monroe,
ZD, and Gorhskov, arXiv:2403.07061 [quant-ph].




A cold-atom simulation proposal for scattering in a U(1) QLM in (1+1)D

Quark-antiquark scattering Meson-meson scattering
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Su, Guo-Xian, Osborne, and Halimeh, arXiv:2401.05489 [quant-ph].




A cold-atom simulation proposal for scattering in a U(1) QLM in (1+1)D

Quark-antiquark scattering

Meson-meson scattering
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A circuit-QED simulation proposal for scattering in the Schwinger model
Circuit QED. mapping Quark-antiquark scattering Meson-meson scattering
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A Rydberg-atom quantum simulation of scattering in the (1+1)D U(1) QLM
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Xiang, Zhou, Liu, Liu, Zhang, Yuan, Zhang, Xu,
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FIRST-PRINCIPLES PREDICTIONS FOR SCATTERING PROCESSES:
QUANTUM SIMULATIONS? YES! GAME IS ON BUT LONG WAY TO GO!

High-energy Particle Collisions
Quantum Quantum
T U, Computing/ Entanglement

Simulation

Bauer, ZD, Klco, and Savage, Nature
Rev. Phys. 5 (2023) 7, 420-432.

Check out our recent review:
Halimeh, Mueller, Knolle, Papié, ZD, “Quantum simulation of out-of-
equilibrium dynamics in gauge theories”, arXiv:2509.03586 [quant-ph].
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