

HADNUCMAT @ University of Barcelona
January 2026

Toward quantum simulation of scattering in gauge theories and other strongly correlated systems

ZOHREH DAVOUDI

University of Maryland, College Park

JOINT CENTER FOR
QUANTUM INFORMATION
AND COMPUTER SCIENCE

Institute for
Robust Quantum
Simulation

MARYLAND CENTER
FOR FUNDAMENTAL PHYSICS

PART 0:
MOTIVATION: FIRST-PRINCIPLES SIMULATIONS OF SCATTERING

PART I:
BASIC ELEMENTS OF QUANTUM SIMULATION OF SCATTERING

PART II:
TOWARD DIGITAL QUANTUM SIMULATIONS OF
SCATTERING

PART III:
TOWARD ANALOG QUANTUM SIMULATIONS OF
SCATTERING

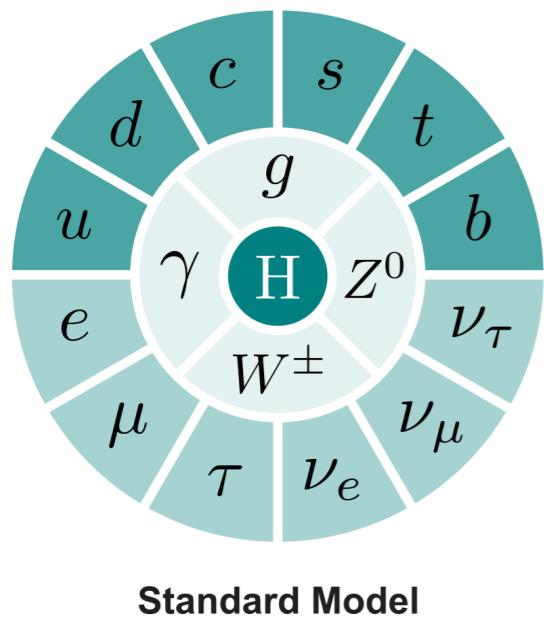
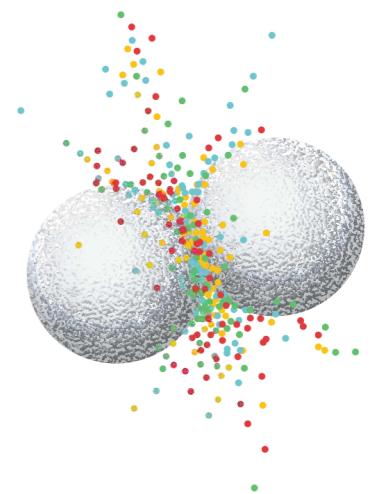
PART 0:
MOTIVATION: FIRST-PRINCIPLES SIMULATIONS OF SCATTERING

PART I:
BASIC ELEMENTS OF QUANTUM SIMULATION OF SCATTERING

PART II:
TOWARD DIGITAL QUANTUM SIMULATIONS OF
SCATTERING

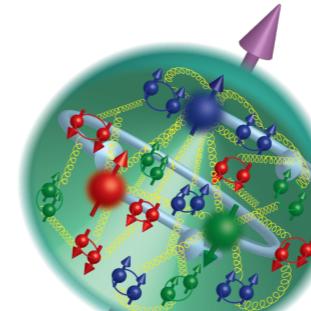
PART III:
TOWARD ANALOG QUANTUM SIMULATIONS OF
SCATTERING

AN OVERARCHING GOAL OF NUCLEAR AND HIGH-ENERGY PHYSICS: FIRST-PRINCIPLES PREDICTIONS FOR SCATTERING PROCESSES



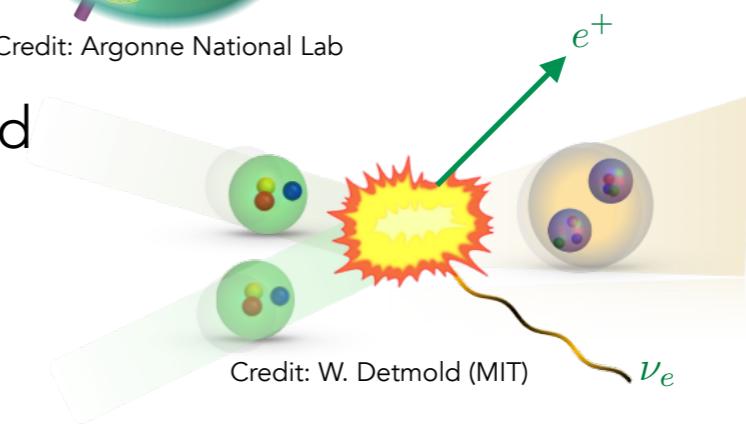
We care about scattering and reaction processes since they can:

i) teach us about the **internal structure of matter**,



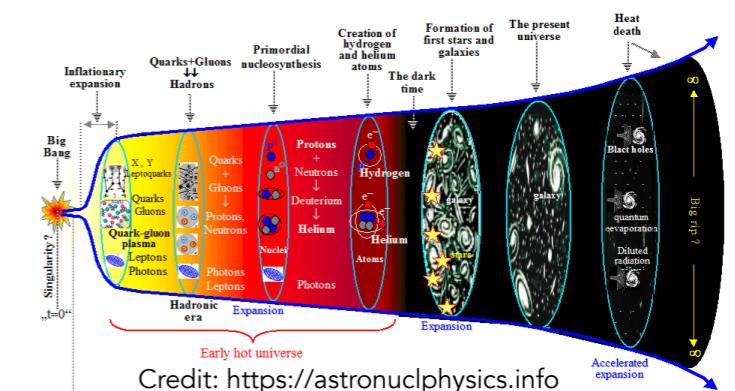
Credit: Argonne National Lab

ii) constrain astrophysical models of **stellar evolution** and of **terrestrial energy-production** mechanisms,



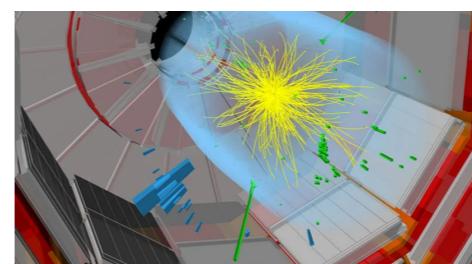
Credit: W. Detmold (MIT)

iii) illuminate **phases of matter** and reveal how **matter evolves under extreme conditions** such as post Big Bang,



Credit: <https://astronuclphysics.info>

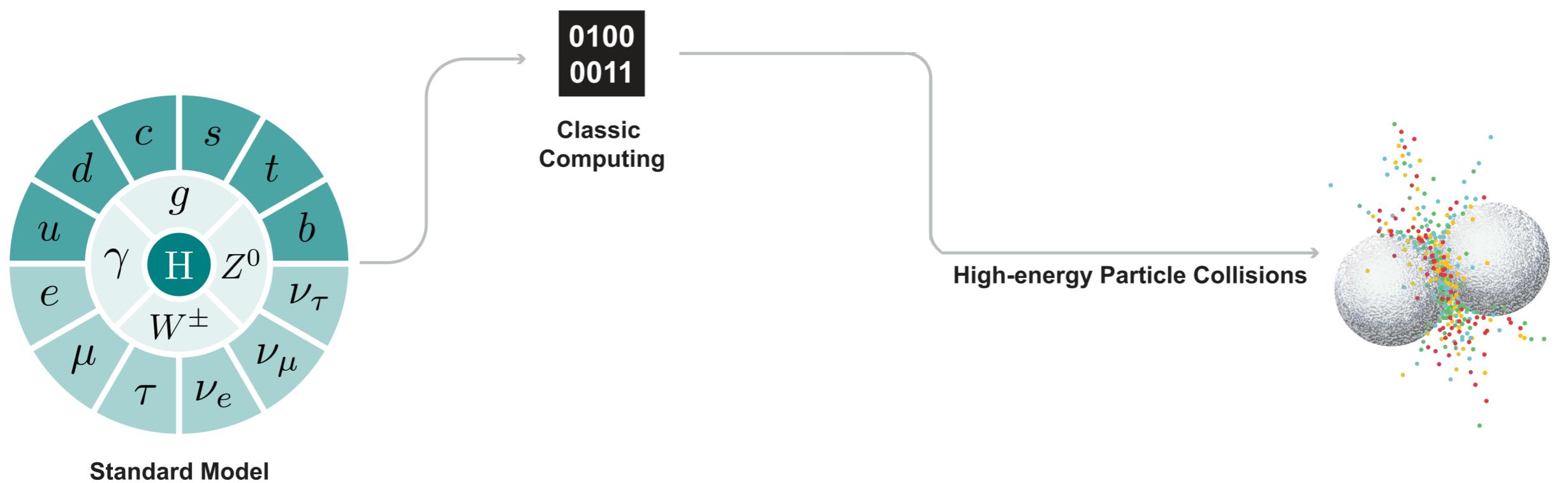
iv) lead to discovery of **new symmetries, particles, and interactions** in nature.



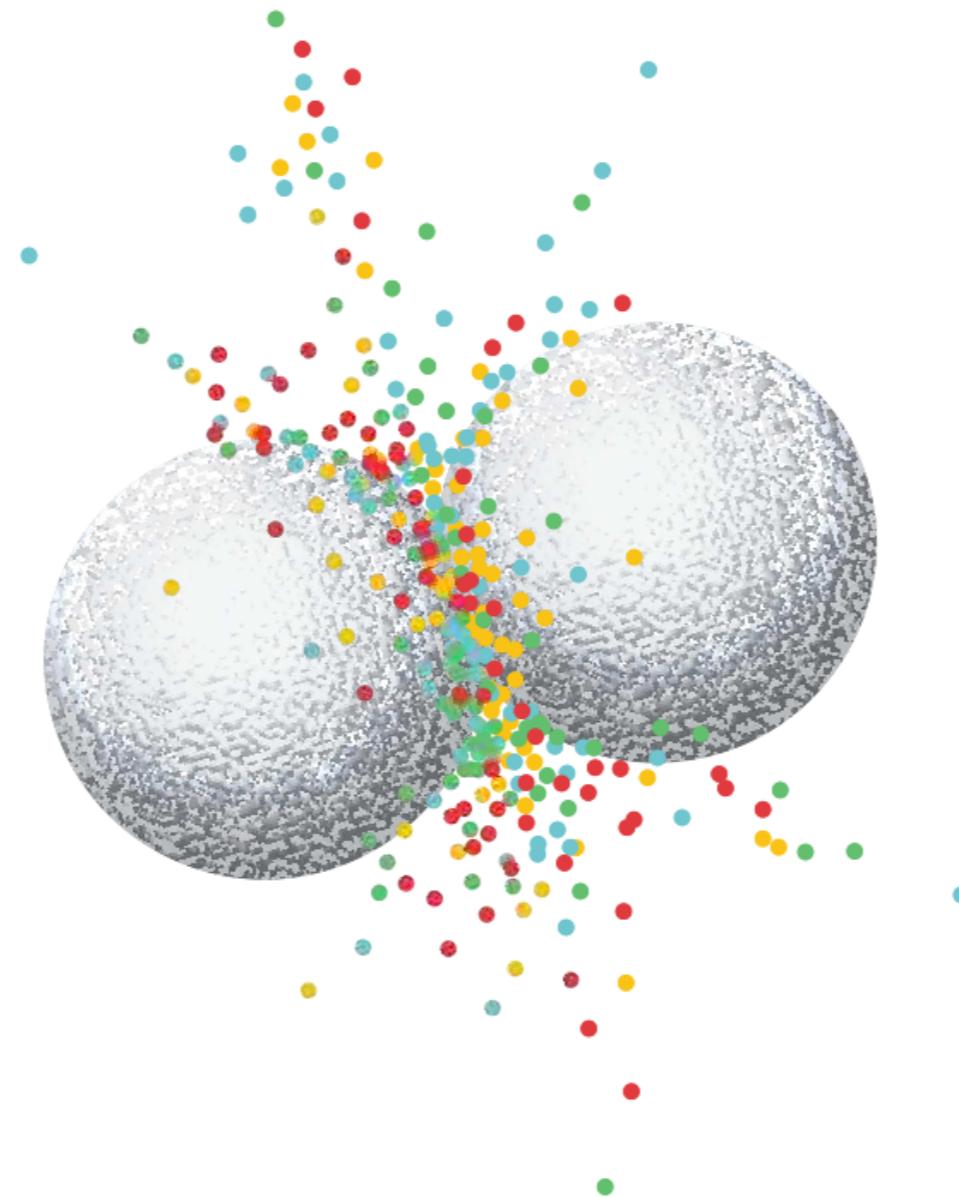
Credit: CMS, CERN

A barrier to making first-principles predictions is the quantum, relativistic, and nonperturbative nature of **quantum chromodynamics**, the quantum field theory of quarks and gluons!

FIRST-PRINCIPLES PREDICTIONS FOR SCATTERING PROCESSES: CLASSICAL SIMULATIONS?



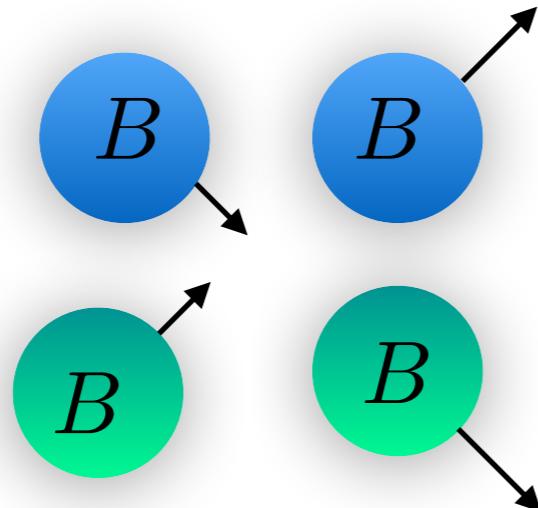
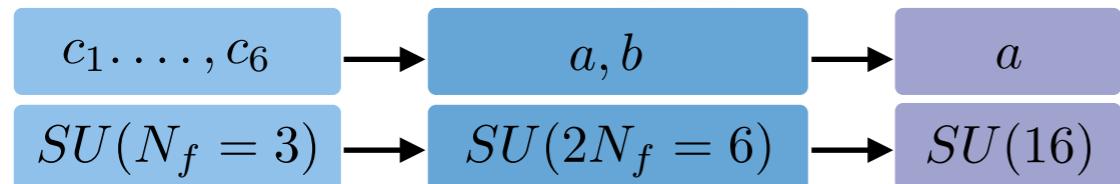
Can we classically simulate scattering of composite particles from the Standard Model?



Lattice gauge theory methods based on Monte-Carlo sampling in Euclidean (imaginary) time have enabled this...but only at low energies so far...

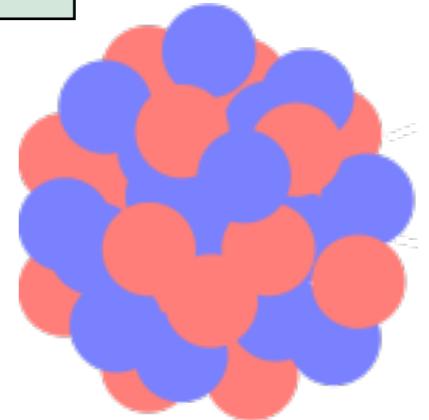
SOME EXAMPLES FROM MY PAST AND CURRENT WORK WITHIN NPLQCD

Wagman, ZD et al (NPLQCD),
Phys. Rev. D 96, 114510 (2017).
 Illa, ZD et al (NPLQCD),
Phys. Rev. D 103, 5, 054508 (2021).
 Amarasinghe, ZD et al (NPLQCD), *Phys. Rev. D* 107, 094508 (2023).



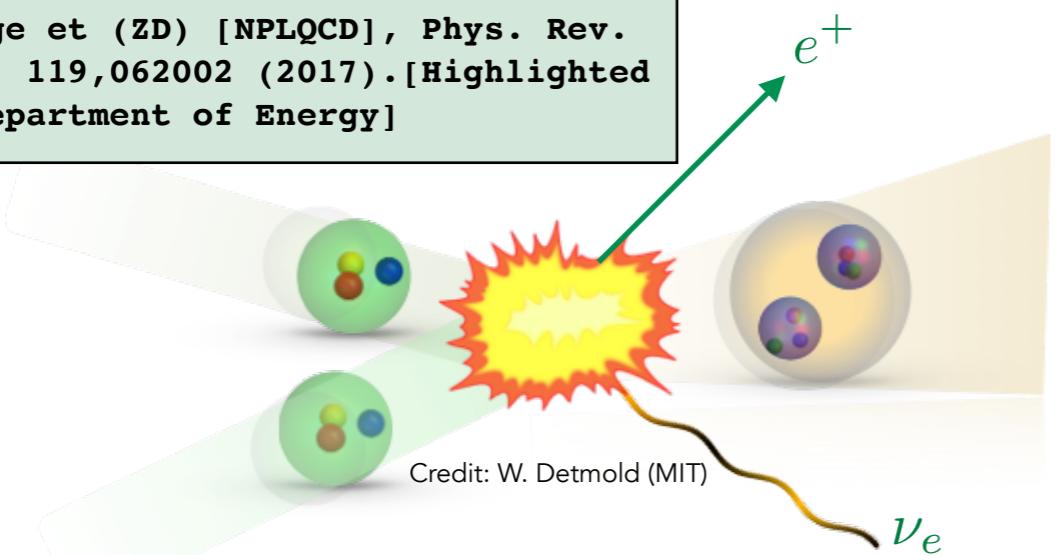
Chang, ZD et al (NPLQCD), *Phys. Rev. Lett.* 120, 5, 152002 (2018).

$$g_X^{(f)}(A) = \langle A | \bar{q}_f \Gamma_X q_f | A \rangle$$



$$= \sum \text{ (red sphere)}, \text{ (blue sphere)} ?$$

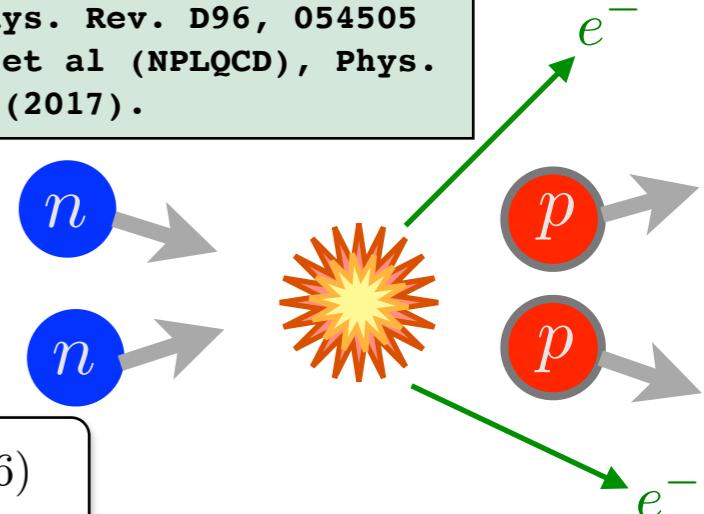
Savage et (ZD) [NPLQCD], *Phys. Rev. Lett.* 119, 062002 (2017). [Highlighted by Department of Energy]



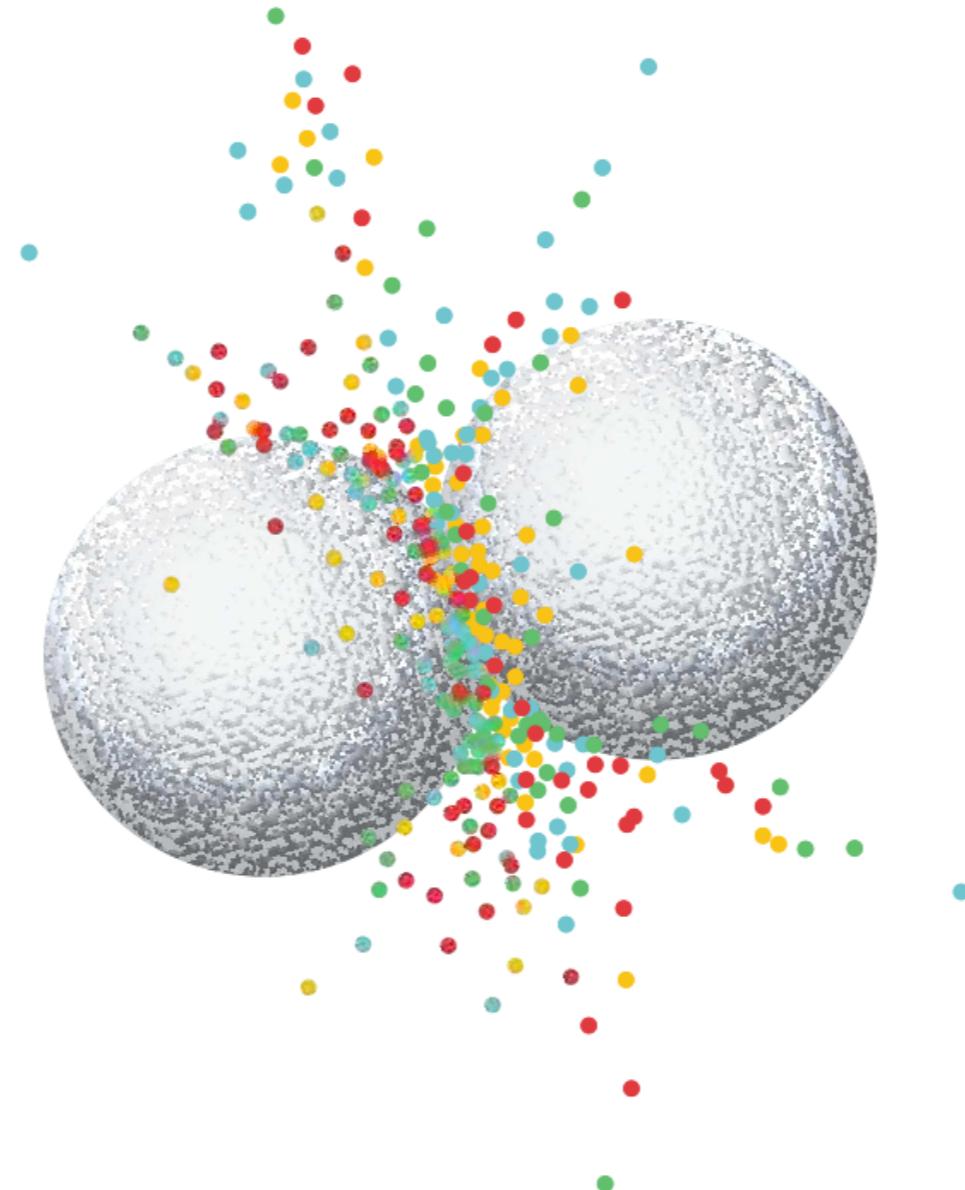
$$L_{1,A} = 3.9(0.1)(1.0)(0.3)(0.9) \text{ fm}^3 @ \mu = m_\pi^{\text{phys.}} = 140 \text{ MeV}$$

ZD, Detmold, Fu, Grebe, Jay, Murphy, Oare, Shanahan, Wagman, arXiv:2402.09362 [hep-lat]. See also our two-neutrino studies in Tiburzi et al (ZD) (NPLQCD), *Phys. Rev. D* 96, 054505 (2017) and Shanahan, ZD et al (NPLQCD), *Phys. Rev. Lett.* 119, 062003 (2017).

$$a^2 \mathcal{A}^{nn \rightarrow pp} = 0.078(16) @ m_\pi = 806 \text{ MeV}$$



What about **high energies**, like events at the Large Hadron Collider or the Relativistic Heavy-Ion Collider?



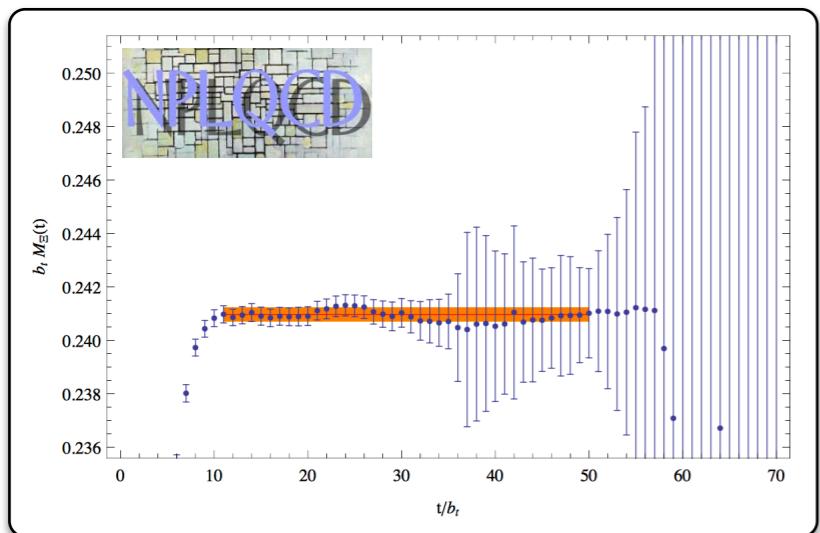
There are mainly two issues...

- i) **making complicated states**, i.e., high-energy protons, or heavy ions, etc.,
- ii) **imaginary time nature** of the classical Monte-Carlo calculations...no access to states as a function of Minkowski time elapsed after the collision!

THREE FEATURES MAKE LATTICE-QCD CALCULATIONS OF NUCLEI HARD:

i) The complexity of systems grows factorially with the number of quarks.

Detmold and Orginos (2013)
Detmold and Savage (2010)
Doi and Endres (2013)

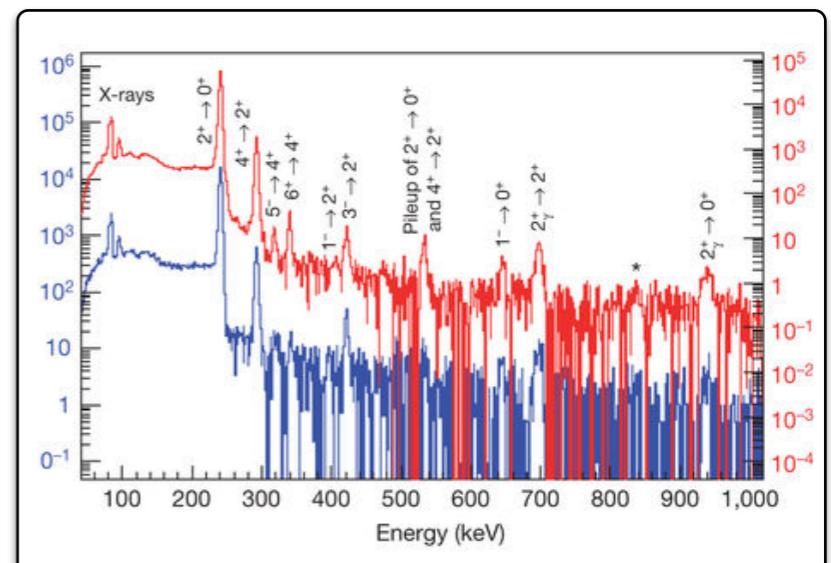


ii) There is a severe signal-to-noise degradation.

Paris (1984) and Lepage (1989)
Wagman and Savage (2017, 2018)

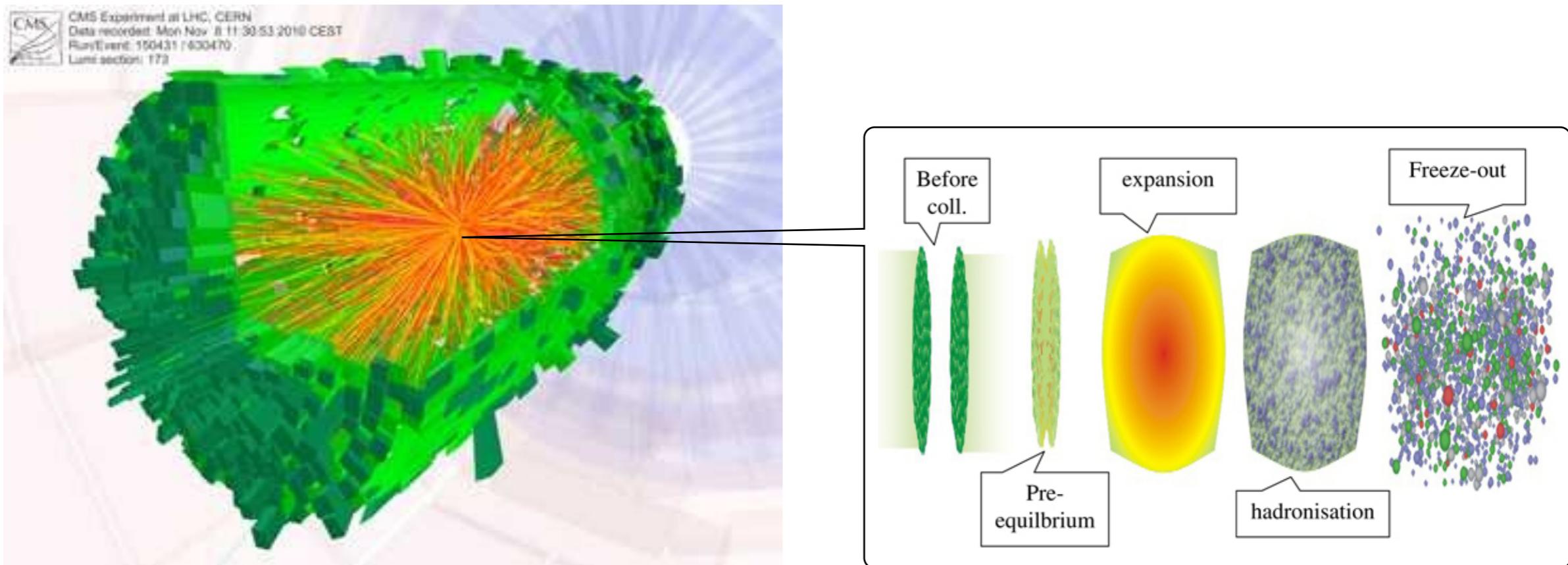
iii) Excitation gaps of nuclei are much smaller than the QCD scale.

Beane et al (NPLQCD) (2009)
Beane, Detmold, Orginos, Savage (2011)
ZD (2018)
Briceno, Dudek and Young (2018)



SIGN PROBLEM MAKES CONVENTIONAL LATTICE-GAUGE-THEORY METHODS INTRACTABLE.

No access to real-time nonequilibrium dynamics of matter in heavy-ion collisions or after the Big Bang...



...and to a wealth of dynamical response functions, transport properties, parton distribution functions, etc.

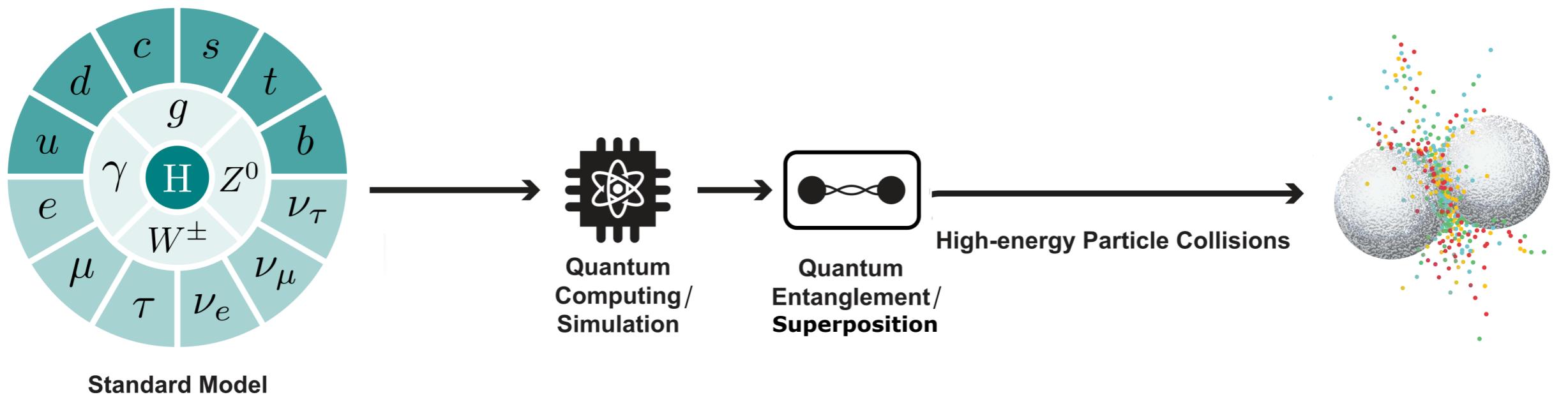
Path integral formulation:

$$e^{iS[U, q\bar{q}]}$$

Hamiltonian evolution:

$$U(t) = e^{-iHt}$$

FIRST-PRINCIPLES PREDICTIONS FOR SCATTERING PROCESSES: QUANTUM SIMULATIONS?



Bauer, ZD, Klco, and Savage, *Nature Rev. Phys.* 5 (2023) 7, 420–432.

PART 0:
MOTIVATION: FIRST-PRINCIPLES SIMULATIONS OF SCATTERING

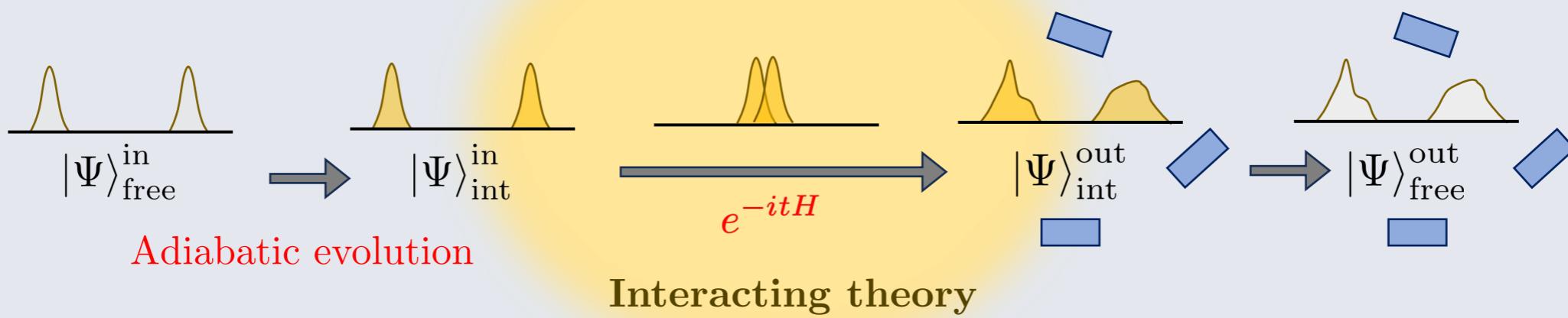
PART I:
BASIC ELEMENTS OF QUANTUM SIMULATION OF SCATTERING

PART II:
TOWARD DIGITAL QUANTUM SIMULATIONS OF
SCATTERING

PART III:
TOWARD ANALOG QUANTUM SIMULATIONS OF
SCATTERING

STUDY HIGH-ENERGY SCATTERING VIA QUANTUM SIMULATION? THE JORDAN-LEE-PRESKILL STRATEGY

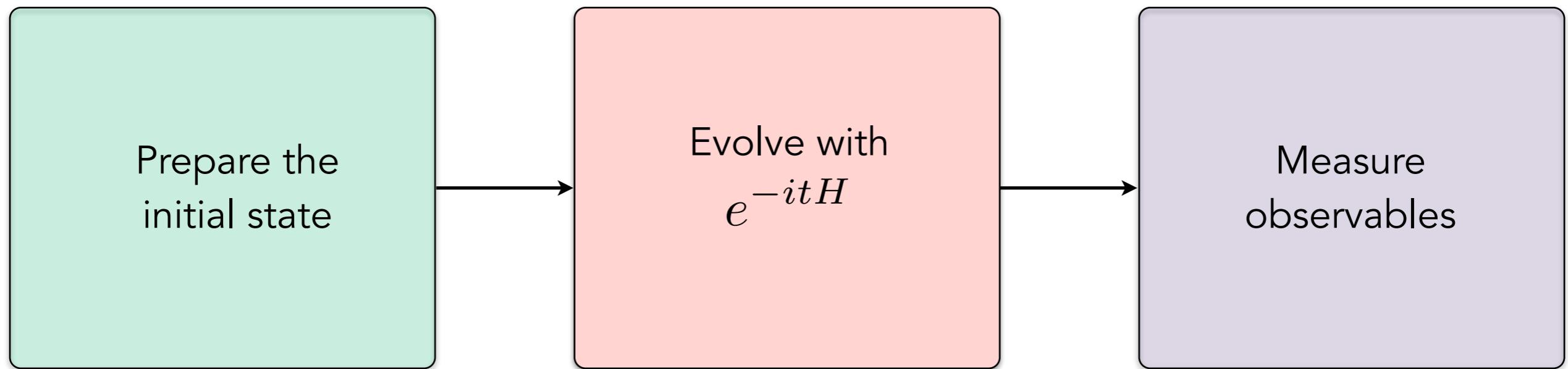
1. State (wave-packet) preparation
2. Time evolution: scattering
3. Measurement of the final state



Jordan, Lee, Preskill, Science 336, 1130-1133 (2012).

Figure from: ZD, Hsieh, and Kadam, arXiv:2402.00840 [quant-ph].

OR MORE GENERALLY...



Prepare the
initial state

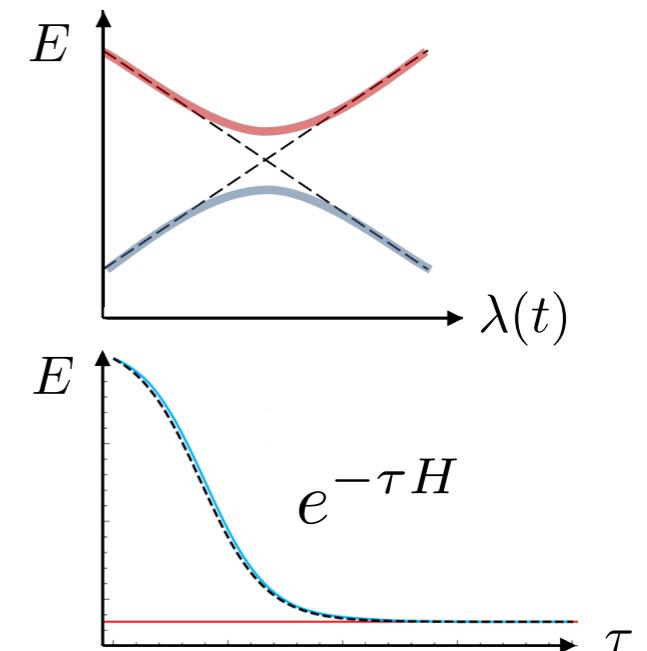
EXAMPLES OF (GROUND-)STATE PREPARATION METHODS

- **Adiabatic state preparation:** Prepare the ground state of a simple Hamiltonian, then adiabatically turn the Hamiltonian to that of the target Hamiltonian. Requires a non-closing energy gap.



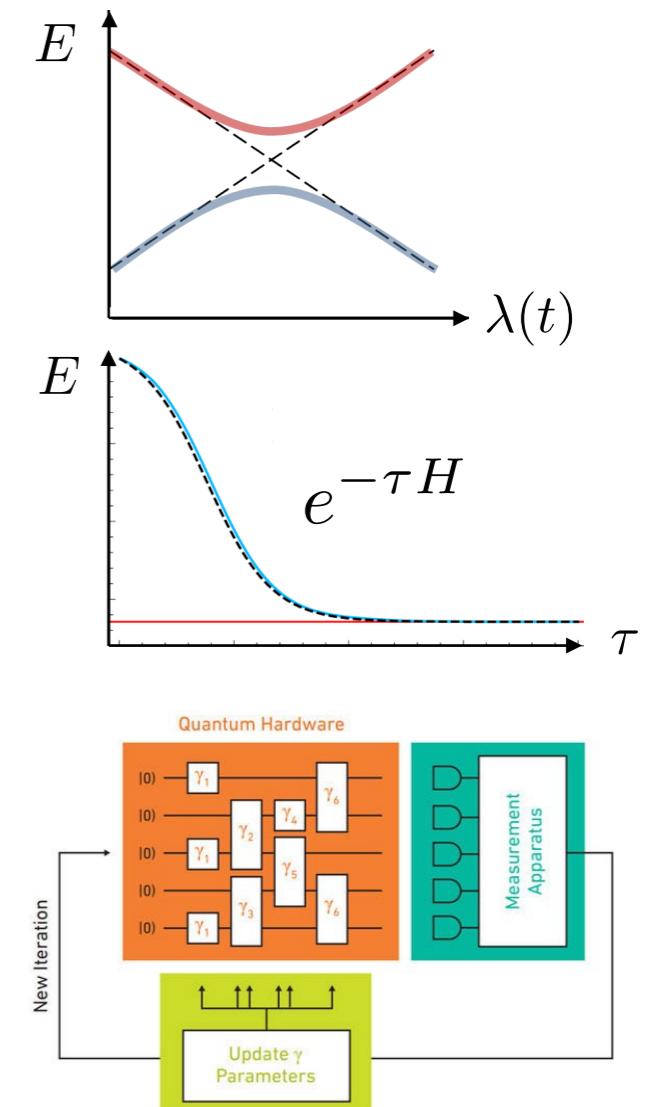
EXAMPLES OF (GROUND-)STATE PREPARATION METHODS

- **Adiabatic state preparation:** Prepare the ground state of a simple Hamiltonian, then adiabatically turn the Hamiltonian to that of the target Hamiltonian. Requires a non-closing energy gap.
- **Imaginary time evolution:** Start with an easily prepared state and evolve with imaginary time operator to settle in the ground state. Requires implementing a non-unitary operator which can be costly.



EXAMPLES OF (GROUND-)STATE PREPARATION METHODS

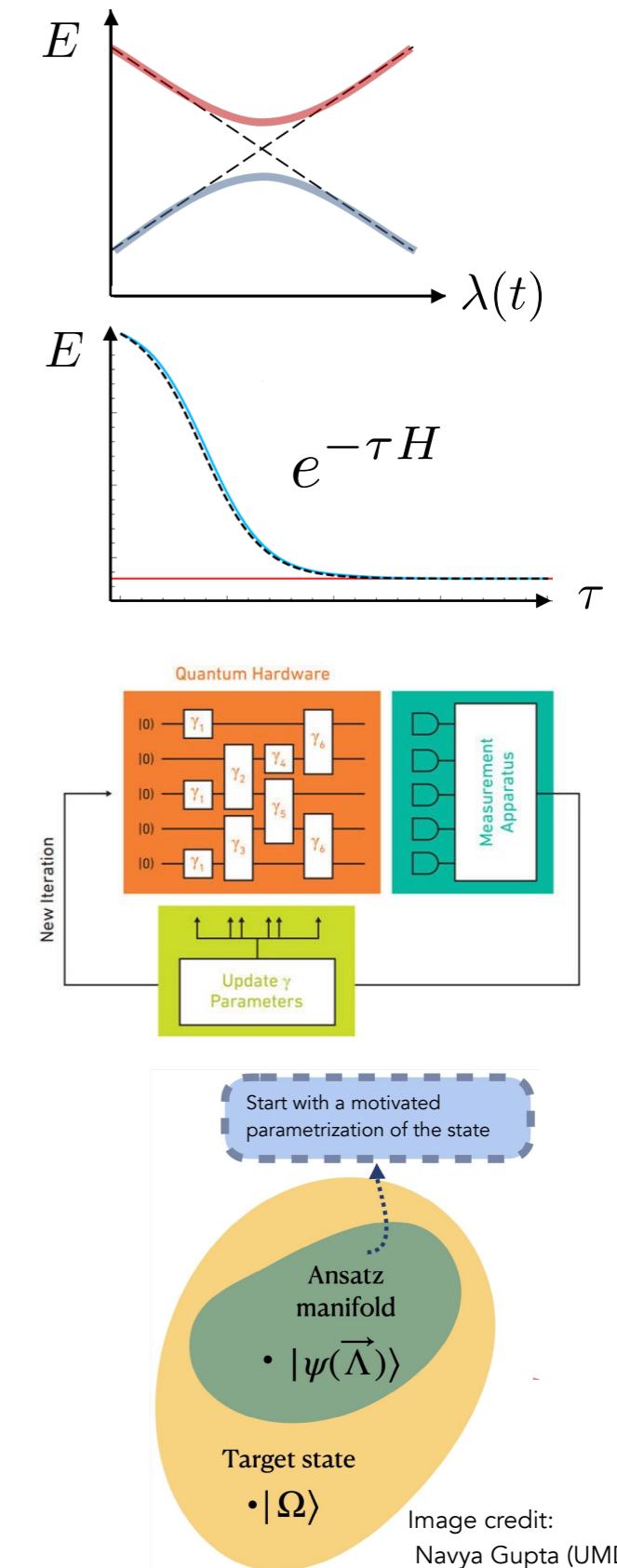
- **Adiabatic state preparation:** Prepare the ground state of a simple Hamiltonian, then adiabatically turn the Hamiltonian to that of the target Hamiltonian. Requires a non-closing energy gap.
- **Imaginary time evolution:** Start with an easily prepared state and evolve with imaginary time operator to settle in the ground state. Requires implementing a non-unitary operator which can be costly.
- **Variational quantum eigensolver (VQE):** Use the variational principle of quantum mechanics and classical processing to minimize the energy of a non-trivial ansatz wavefunction generated by a quantum circuit. The optimized circuit corresponding to the minimum energy generates an approximation to ground-state wavefunction. Can fail if stuck in local minima manifolds or manifolds with exponentially small gradients in qubit number.



EXAMPLES OF (GROUND-)STATE PREPARATION METHODS

- **Adiabatic state preparation:** Prepare the ground state of a simple Hamiltonian, then adiabatically turn the Hamiltonian to that of the target Hamiltonian. Requires a non-closing energy gap.
- **Imaginary time evolution:** Start with an easily prepared state and evolve with imaginary time operator to settle in the ground state. Requires implementing a non-unitary operator which can be costly.
- **Variational quantum eigensolver (VQE):** Use the variational principle of quantum mechanics and classical processing to minimize the energy of a non-trivial ansatz wavefunction generated by a quantum circuit. The optimized circuit corresponding to the minimum energy generates an approximation to ground-state wavefunction. Can fail if stuck in local minima manifolds or manifolds with exponentially small gradients in qubit number.
- **Classically computed states:** Use classical computing such as Monte Carlo, Tensor Networks, Neural Networks to learn the state or features of the state when possible, for a direct implementation of the state as a quantum circuit, or as close enough state to the ground state as a starting point of the above algorithms so as to achieve more efficient implementations.

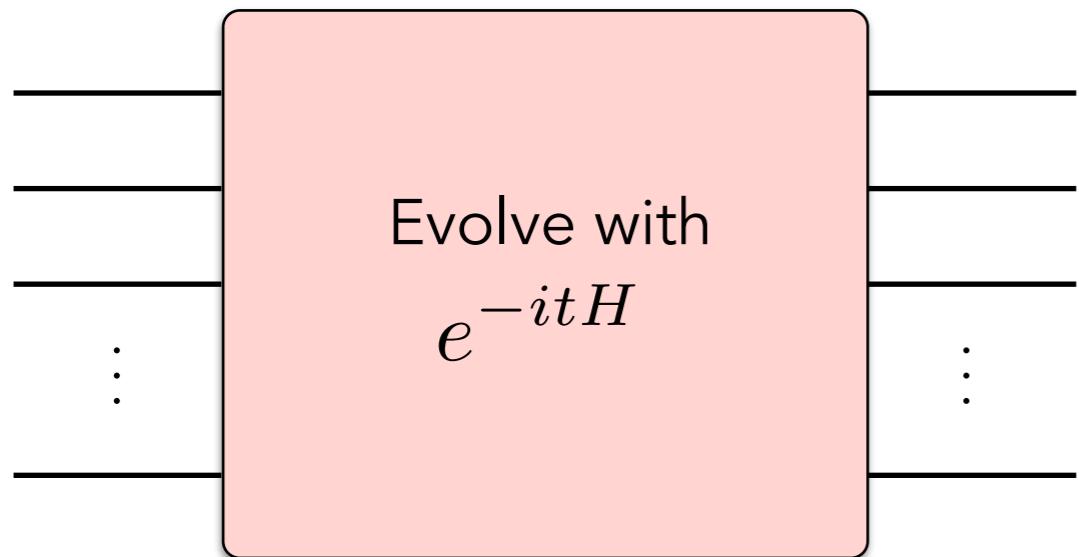
Gupta, White, ZD,
arXiv:2506.02313 [quant-ph].



Evolve with
 e^{-itH}

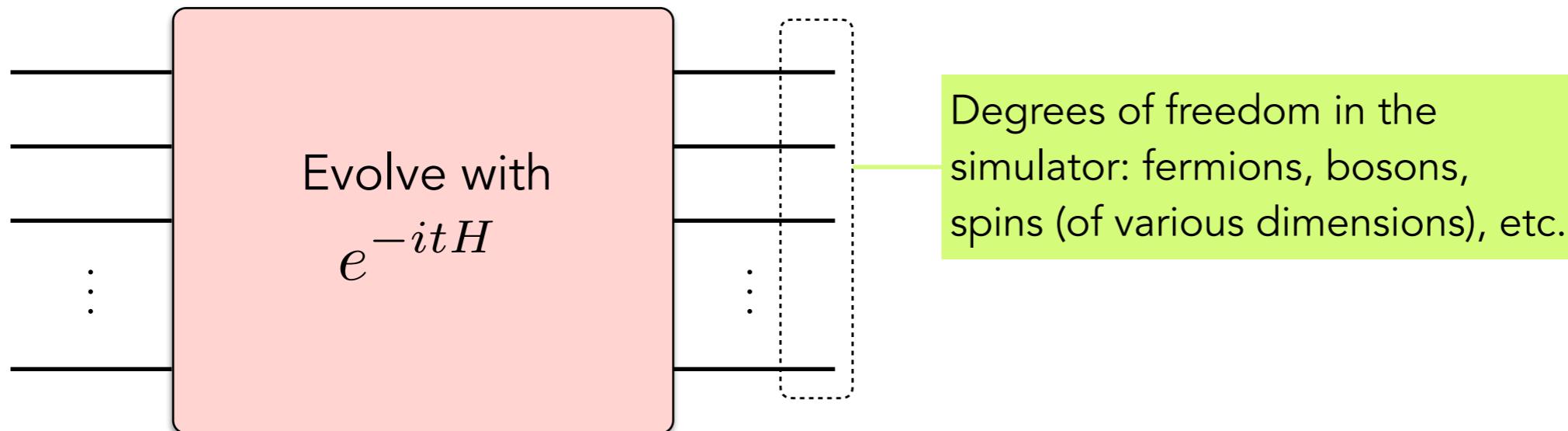
DIFFERENT APPROACHES TO QUANTUM SIMULATION

Analog



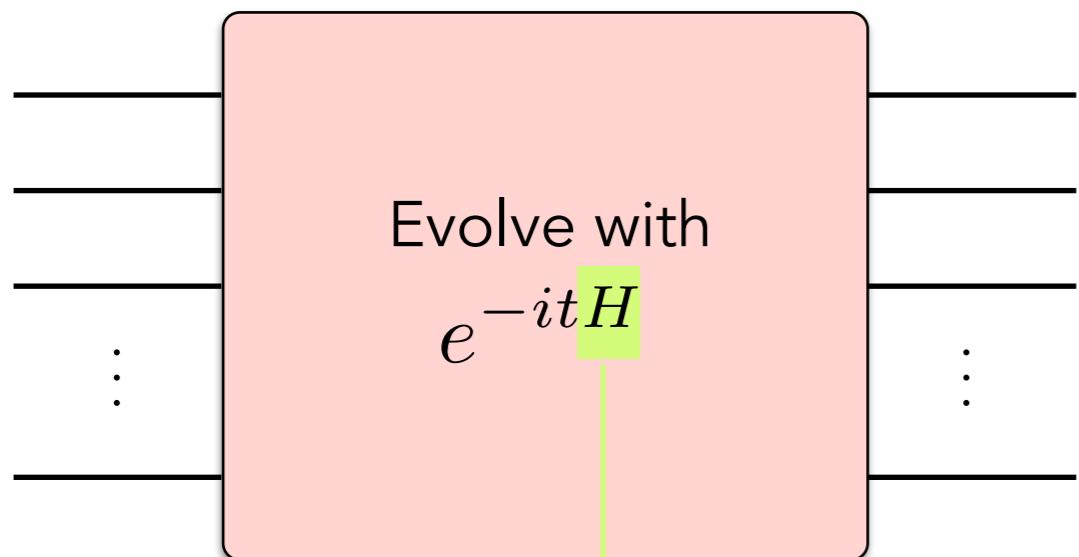
DIFFERENT APPROACHES TO QUANTUM SIMULATION

Analog



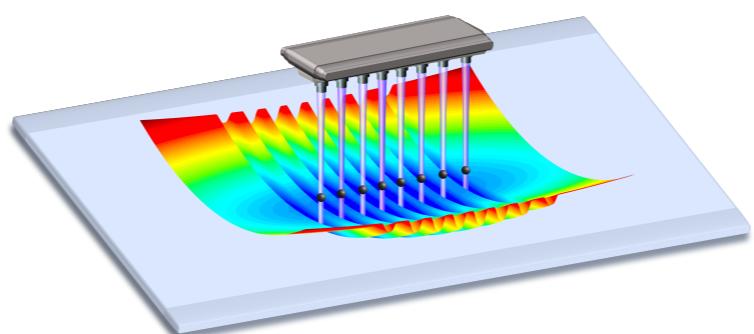
DIFFERENT APPROACHES TO QUANTUM SIMULATION

Analog

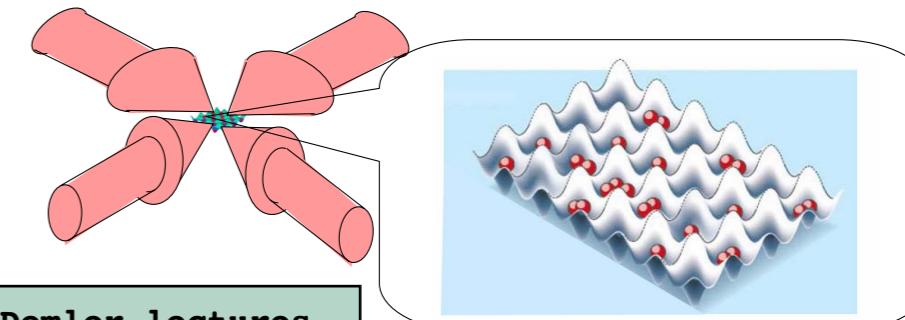


The engineered simulator Hamiltonian that mimics the Hamiltonian of target system.

Some of the leading analog simulators are: cold-atoms in optical lattices, Rydberg atoms with optical tweezers, trapped ions, superconducting circuits (including when coupled to photonics systems), etc.



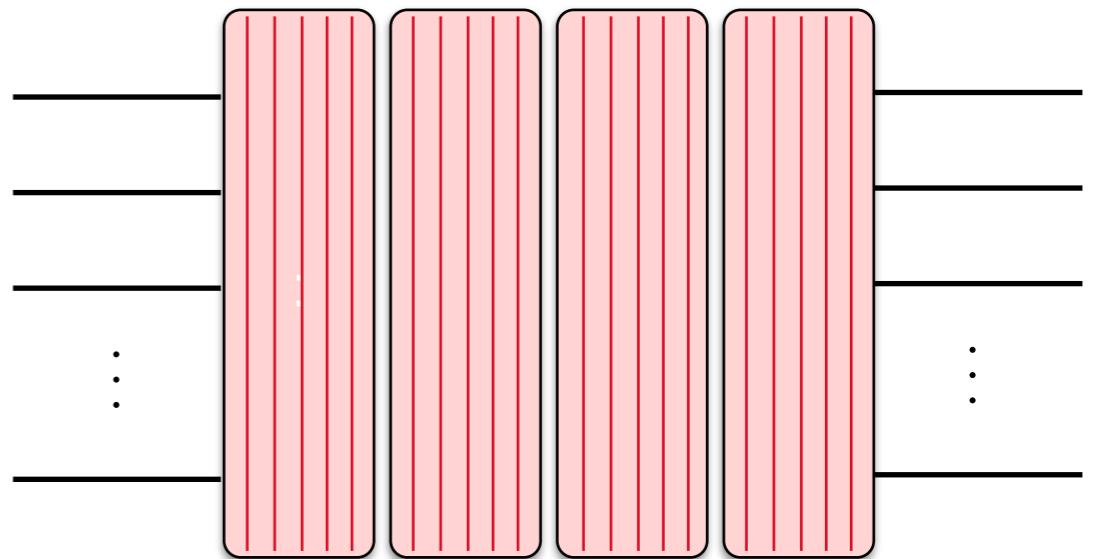
CREDIT: ANDREW SHAW, UNIVERSITY OF MARYLAND



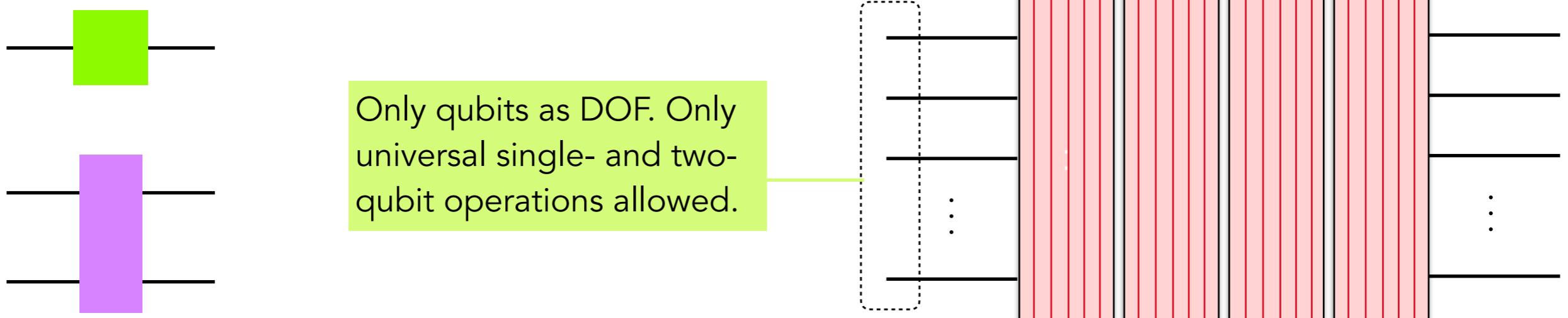
**Eugene Demler lectures,
Harvard University.**

DIFFERENT APPROACHES TO QUANTUM SIMULATION

Digital

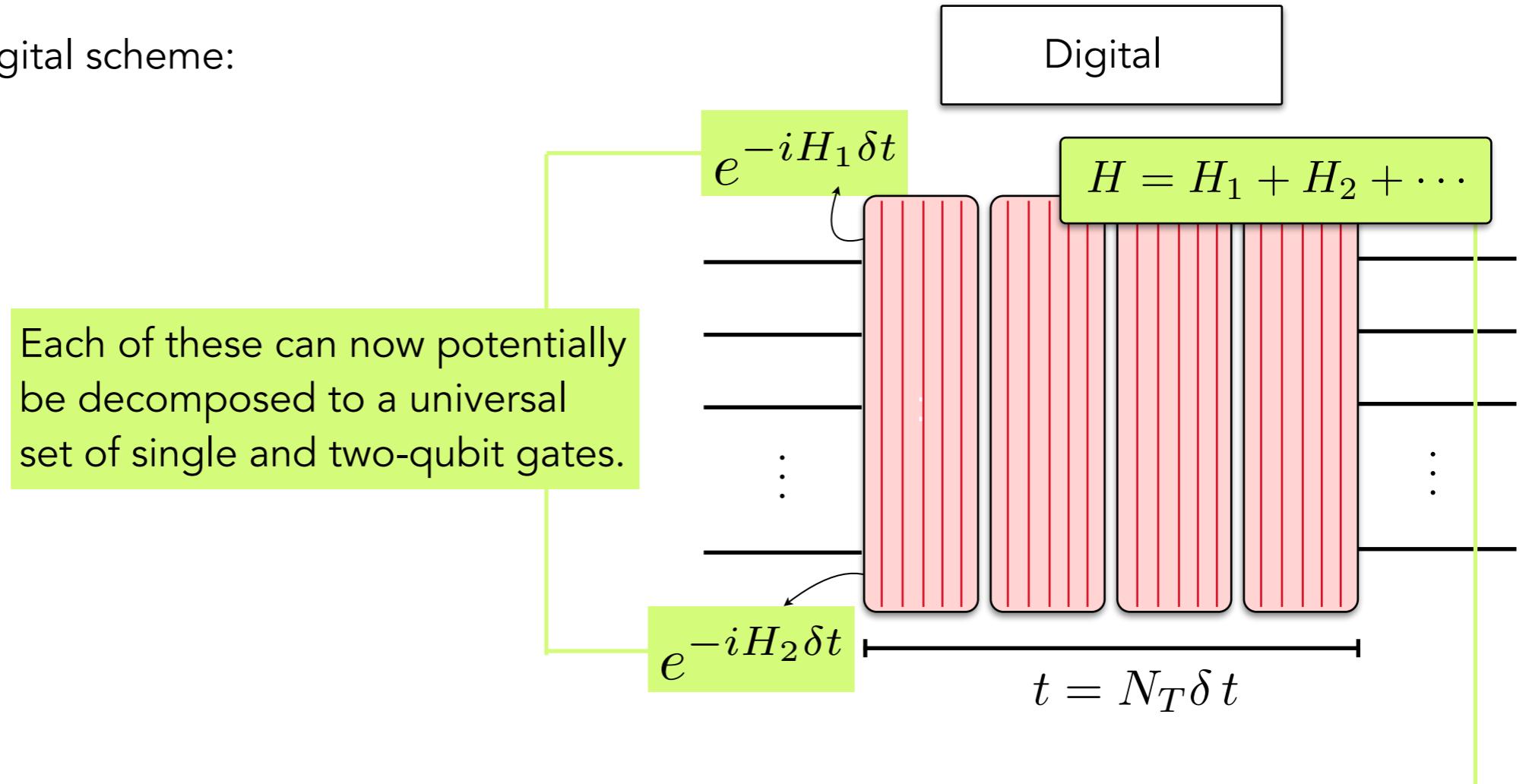


DIFFERENT APPROACHES TO QUANTUM SIMULATION



DIFFERENT APPROACHES TO QUANTUM SIMULATION

Example of a digital scheme:



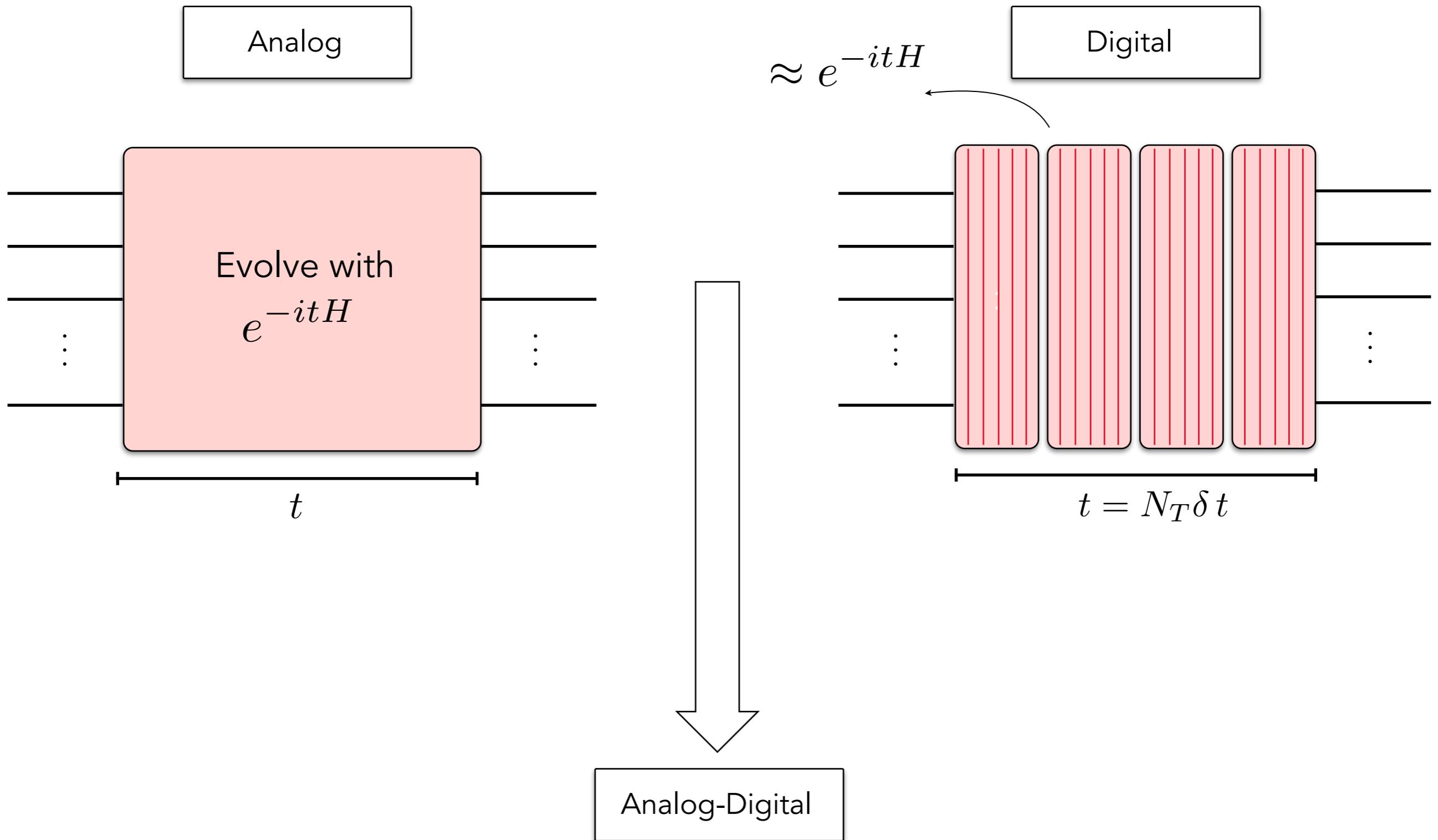
Trotter-Suzuki expansion:

$$e^{-i(H_1+H_2+\dots)t} = [e^{-iH_1\delta t} e^{-iH_2\delta t} \dots]^{t/\delta t} + \mathcal{O}((\delta t)^2)$$

Other digitalization schemes also exist.

...other methods exist too.

DIFFERENT APPROACHES TO QUANTUM SIMULATION



Measure
observables

EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these can be measured directly in the computational basis, but others need a change of basis or other dedicated quantum circuits to access them.

- **Energy and momentum, particle and charge** (both locally and globally)

EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these can be measured directly in the computational basis, but others need a change of basis or other dedicated quantum circuits to access them.

- **Energy and momentum, particle and charge** (both locally and globally)
- Various **correlation functions** (both static and dynamical)

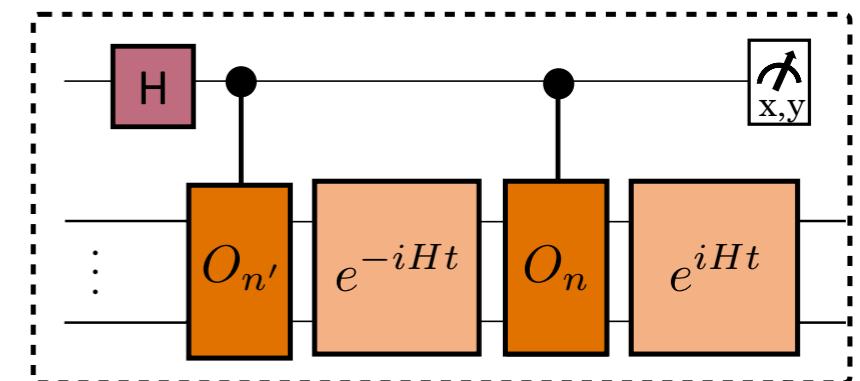
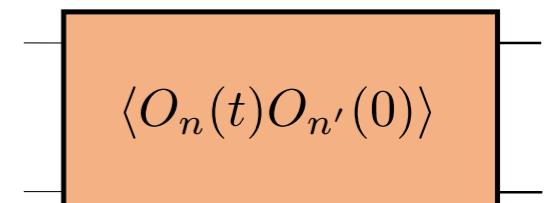


Image credit:
Connor Powers (UMD)

(c)

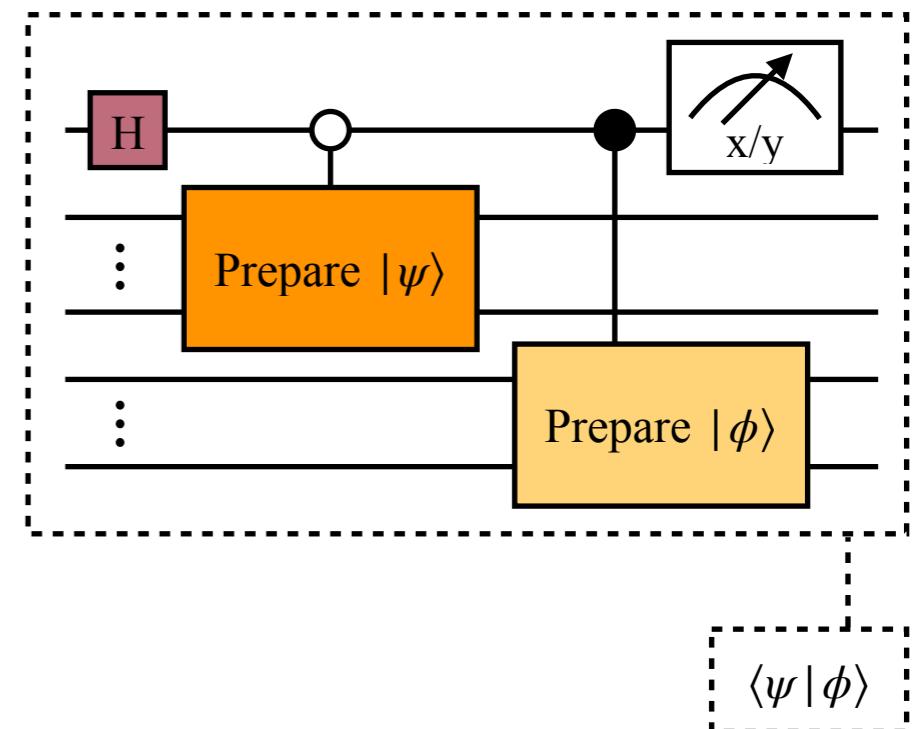


Ramsey Interferometry

EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these can be measured directly in the computational basis, but others need a change of basis or other dedicated quantum circuits to access them.

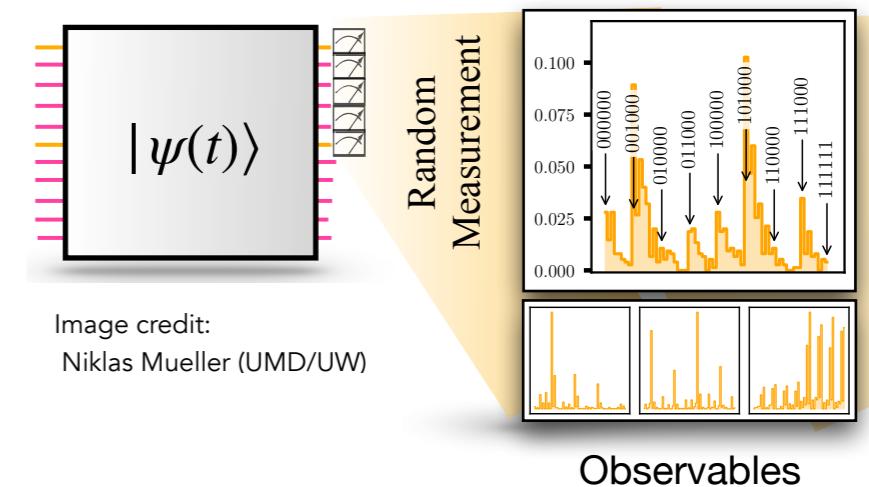
- **Energy and momentum, particle and charge** (both locally and globally)
- Various **correlation functions** (both static and dynamical)
- **Asymptotic S-matrix elements** (assuming asymptotic final states are reached):
 - Exclusive processes: can be obtained from overlaps
 - Inclusive processes: can be obtained from two-current correlator via optical theorem
 - Semi-inclusive processes: can be obtained using projectors



EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these can be measured directly in the computational basis, but others need a change of basis or other dedicated quantum circuits to access them.

- **Energy and momentum, particle and charge** (both locally and globally)
- Various **correlation functions** (both static and dynamical)
- **Asymptotic S-matrix elements** (assuming asymptotic final states are reached):
 - Exclusive processes: can be obtained from overlaps
 - Inclusive processes: can be obtained from two-current correlator via optical theorem
 - Semi-inclusive processes: can be obtained using projectors
- **Entanglement measures** such as estimates of entanglement spectrum (which can signal thermalization or lack of).



EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these can be measured directly in the computational basis, but others need a change of basis or other dedicated quantum circuits to access them.

- **Energy and momentum, particle and charge** (both locally and globally)
- Various **correlation functions** (both static and dynamical)
- **Asymptotic S-matrix elements** (assuming asymptotic final states are reached):
 - Exclusive processes: can be obtained from overlaps
 - Inclusive processes: can be obtained from two-current correlator via optical theorem
 - Semi-inclusive processes: can be obtained using projectors
- **Entanglement measures** such as estimates of entanglement spectrum (which can signal thermalization or lack of).

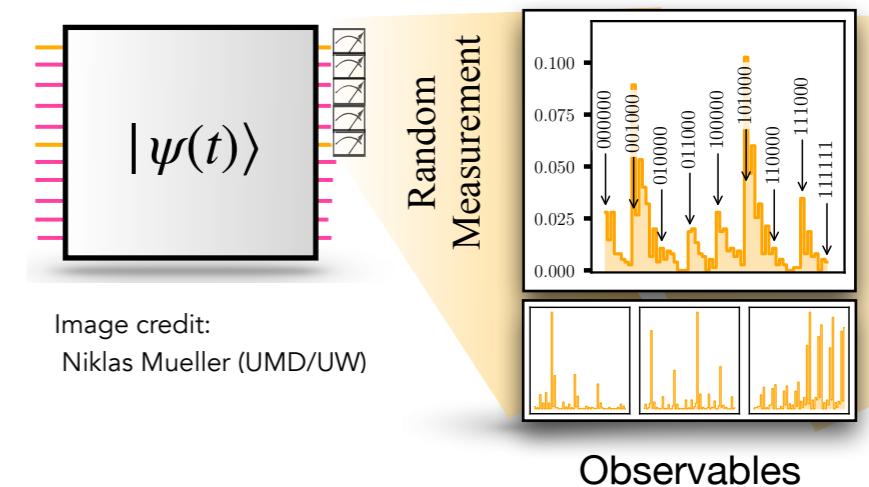


Image credit:
Niklas Mueller (UMD/UW)

Fidelities and full state tomography are hard (they demand exponentially large number of measurements).

PART 0:
MOTIVATION: FIRST-PRINCIPLES SIMULATIONS OF SCATTERING

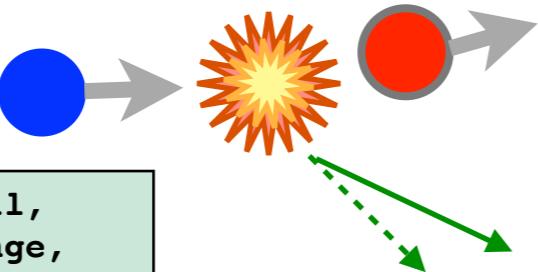
PART I:
BASIC ELEMENTS OF QUANTUM SIMULATION OF SCATTERING

PART II:
TOWARD DIGITAL QUANTUM SIMULATIONS OF
SCATTERING

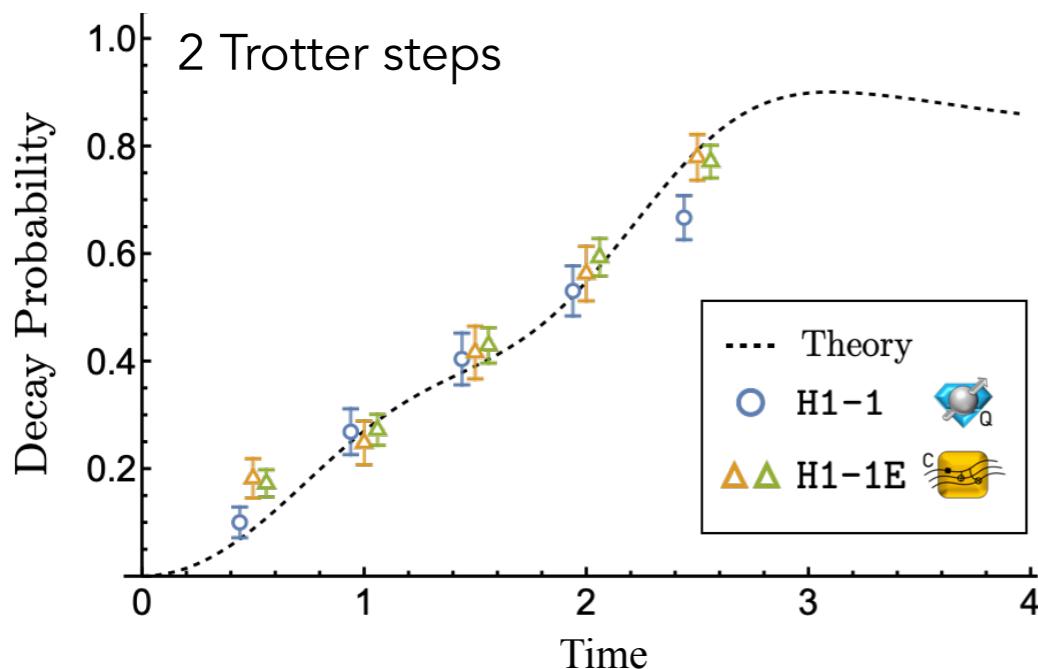
PART III:
TOWARD ANALOG QUANTUM SIMULATIONS OF
SCATTERING

FIRST STEPS TOWARD COLLISION/REACTION PROCESSES

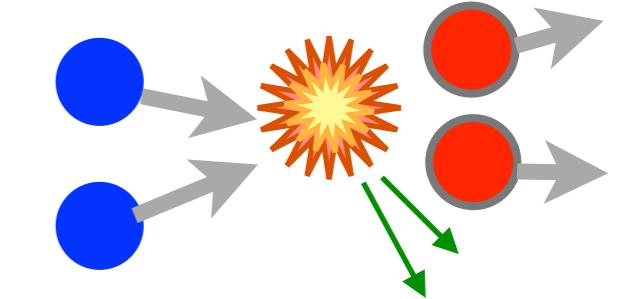
β decay in (1+1)D QCD
(Quantinuum)



Farrell, Chernyshev, Powell,
Zemlevskiy, Illa, and Savage,
Phys. Rev. D 107, 054513 (2023).

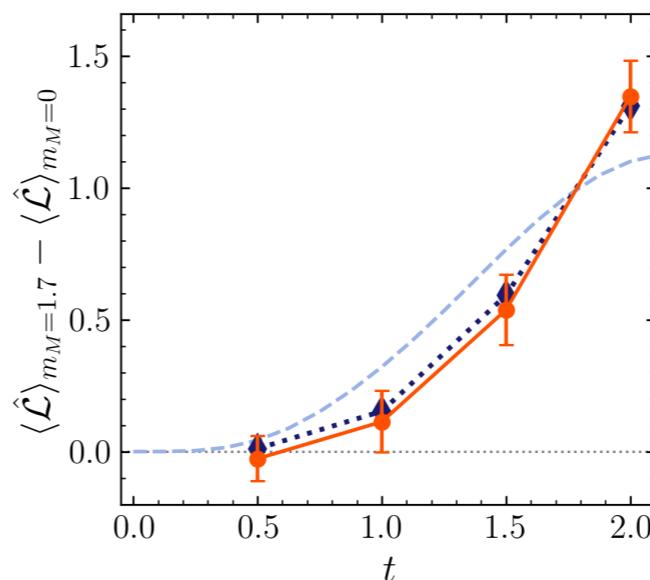
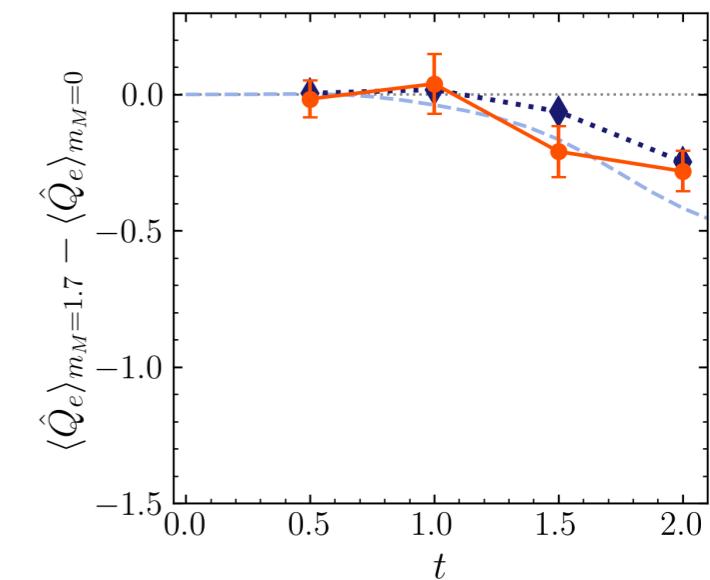


$0\nu\beta\beta$ decay in (1+1)D QCD
(IonQ)



Chernyshev et al,
arXiv:2506.05757 [quant-ph].

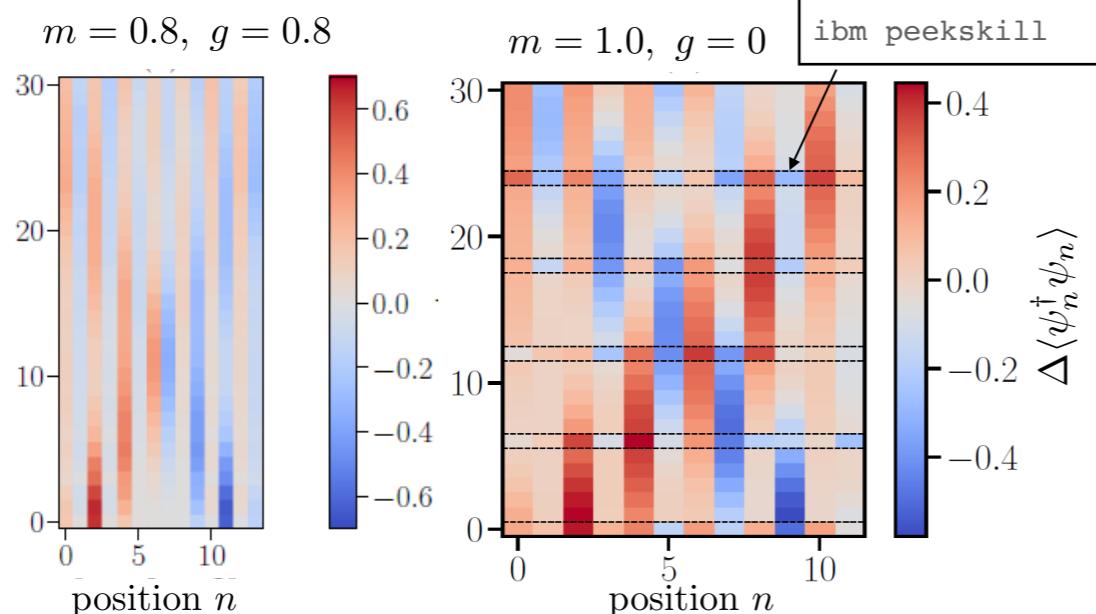
2 Trotter steps



FIRST STEPS TOWARD NUCLEAR REACTION PROCESSES

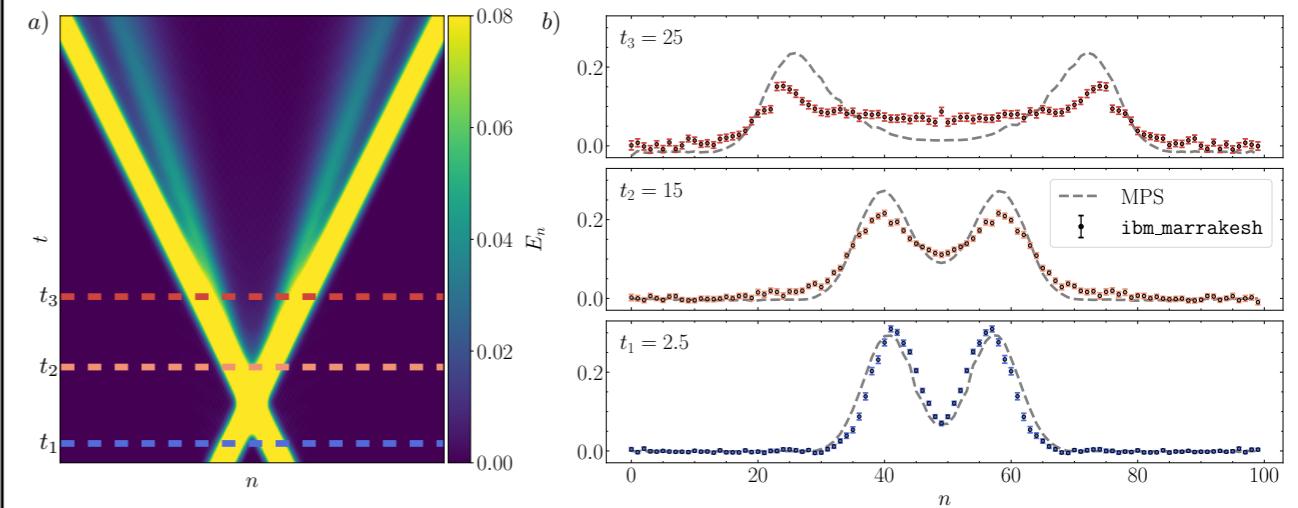
Fermion-antifermion scattering in the (1+1)D Thirring model (IBM)

Chai, Crippa, Jansen, Kühn, Pascuzzi, Tacchino, Tavernelli, Quantum 9, 1638 (2025).



Scattering in a (1+1)D Ising field theory (IBM)

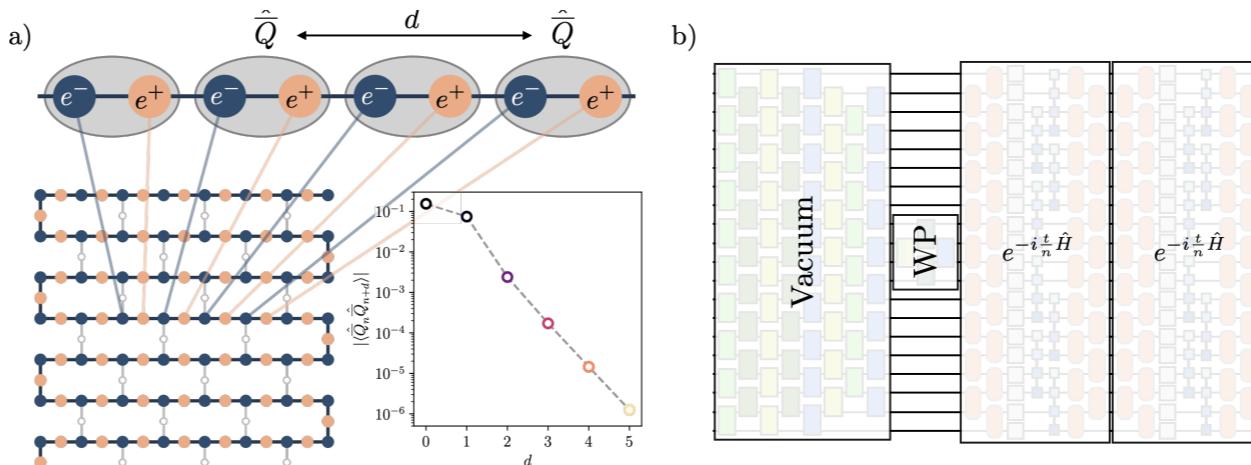
Farrell, Zemlevskiy, Illa, Preskill, arXiv:2505.03111 [quant-ph].



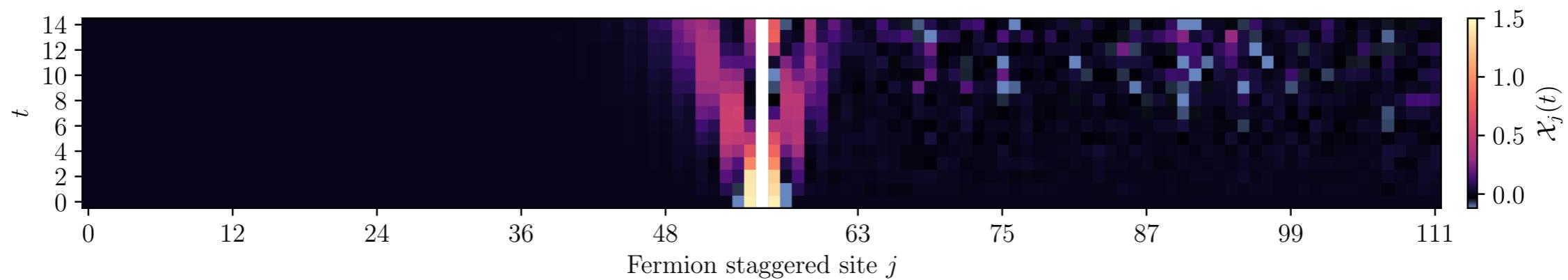
See also Zemlevskiy, arXiv:2411.02486 [quant-ph] for a (1+1)D scalar field theory example.

FIRST STEPS TOWARD HADRONIC WAVE PACKETS AND THEIR COLLISIONS

Hadron wave-packet evolution
in the Schwinger model (112
staggered sites with IBM with
noise mitigation):

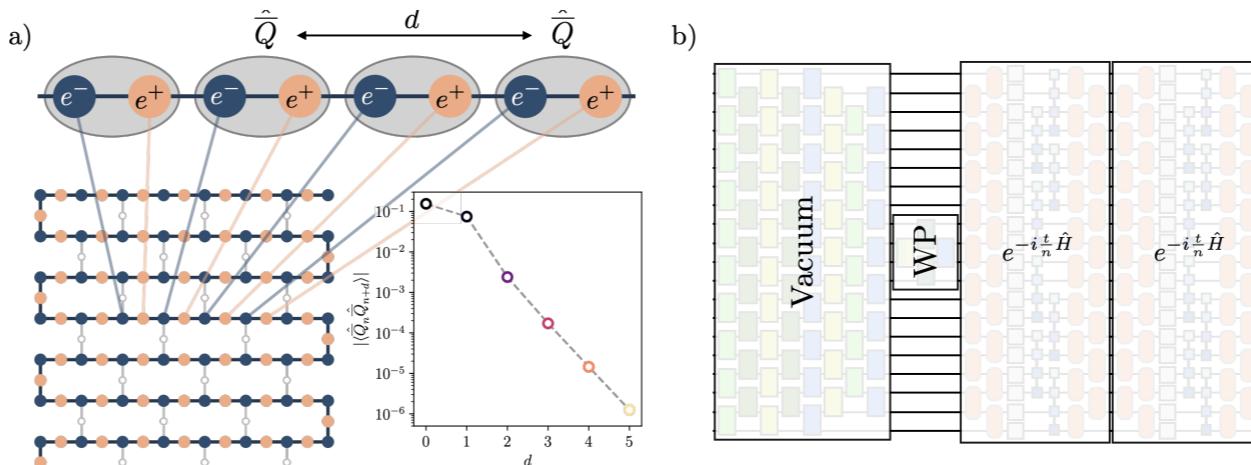


**Farrell, Illa,
Ciavarella, Savage,
Phys. Rev. D 109 (2024)
11, 114510.**

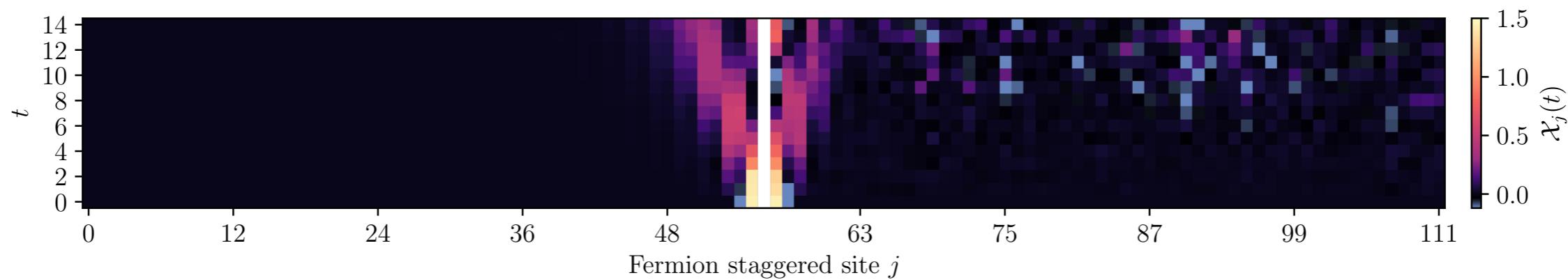


FIRST STEPS TOWARD HADRONIC WAVE PACKETS AND THEIR COLLISIONS

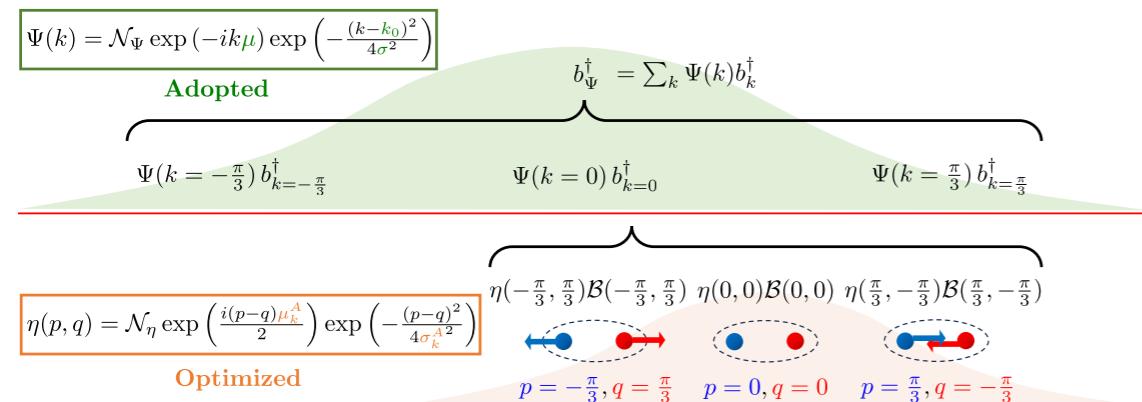
Hadron wave-packet evolution in the Schwinger model (112 staggered sites with IBM with noise mitigation):



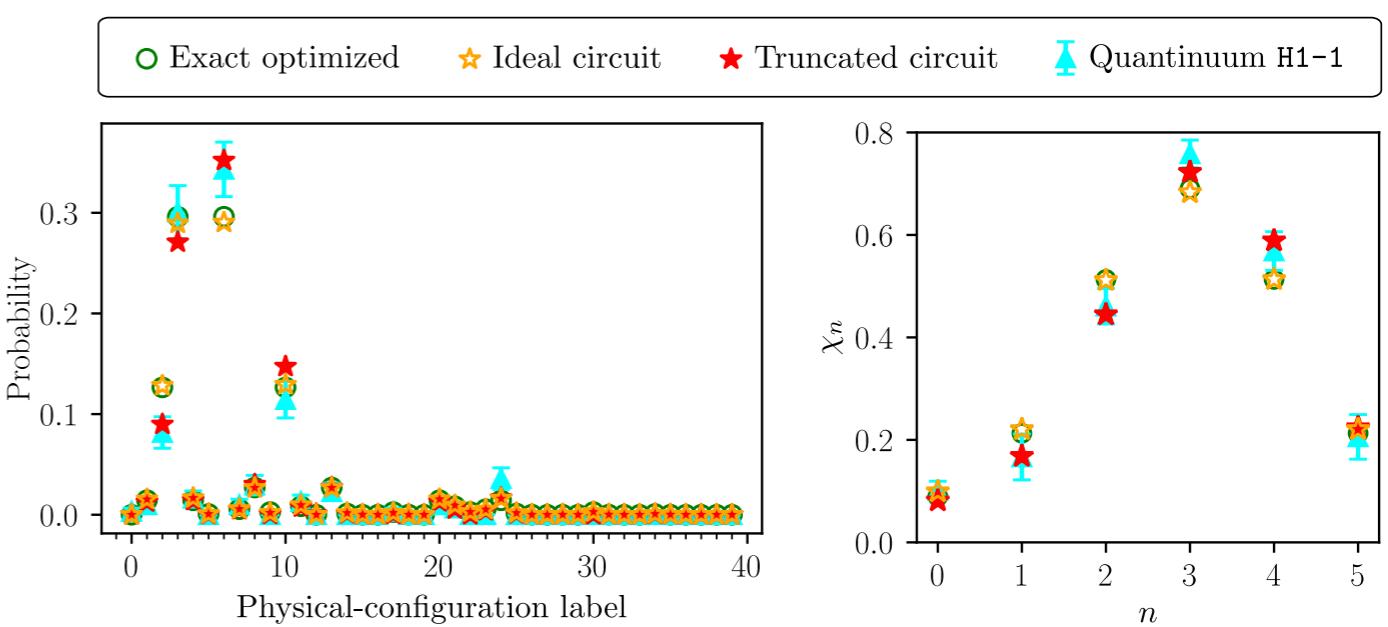
Farrell, Illa, Ciavarella, Savage, Phys. Rev. D 109 (2024) 11, 114510.



Hadron wave packet in a (1+1)D Z_2 gauge theory (12 staggered sites with Quantinuum, minimal noise mitigation):

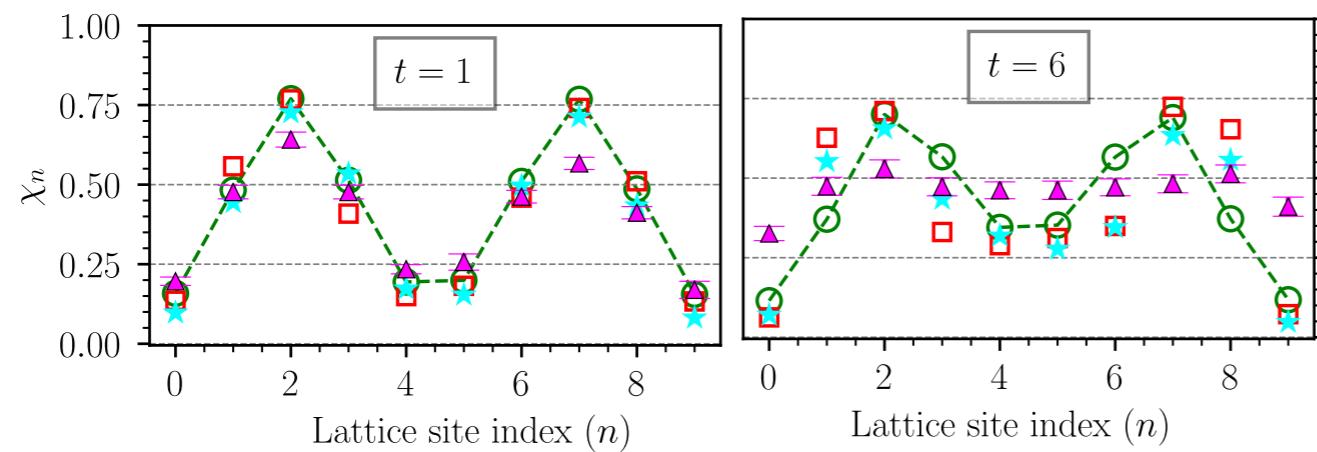


ZD, Hsieh, and Kadam, Quantum 8, 1520 (2024).

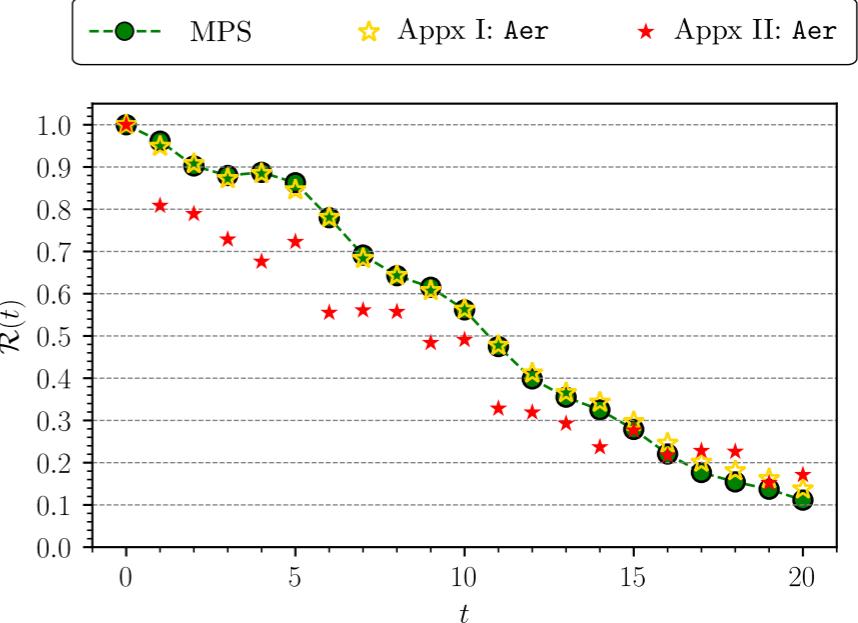


Hadron scattering in a (1+1)D Z_2 gauge theory (IonQ)

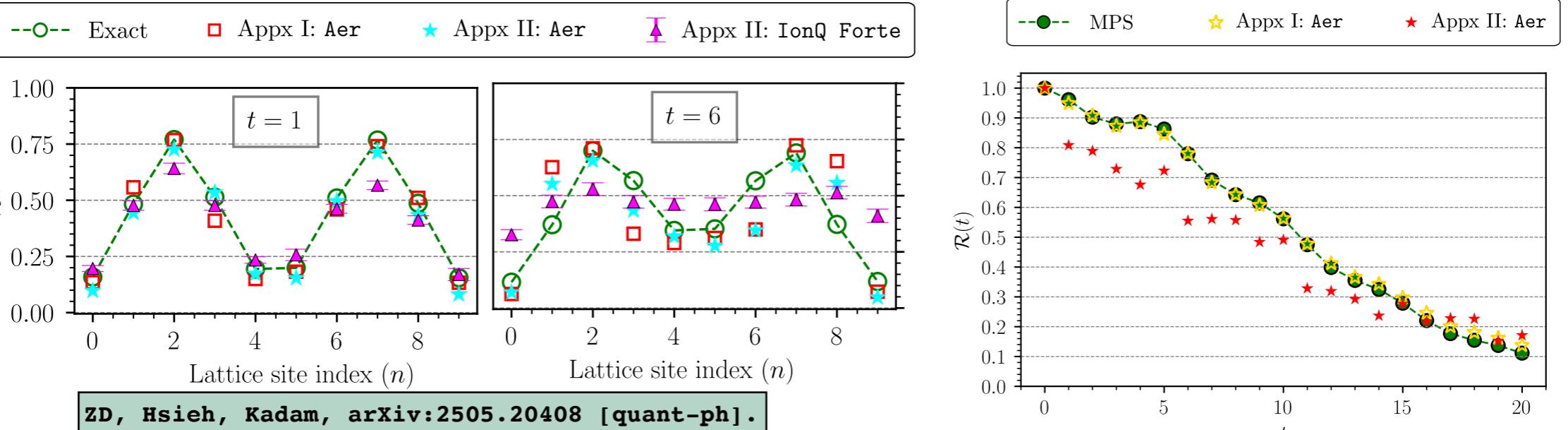
--○-- Exact □ Appx I: Aer ★ Appx II: Aer ▲ Appx II: IonQ Forte



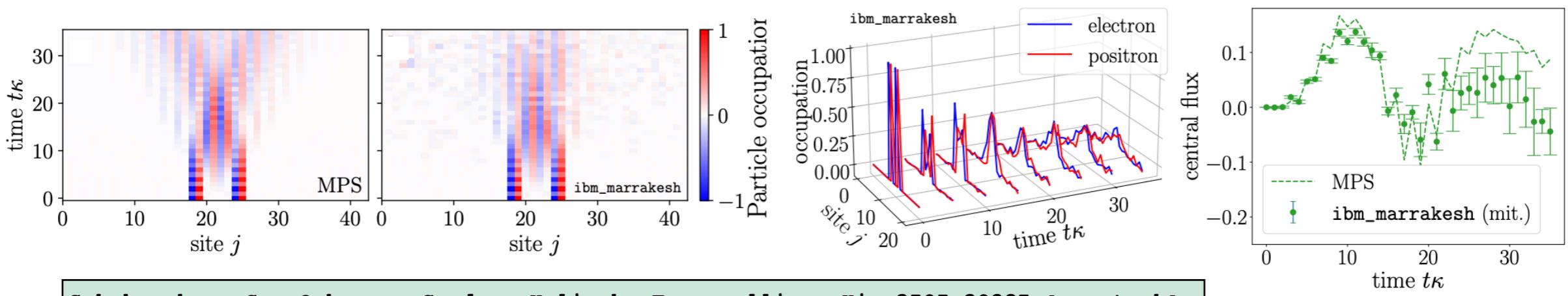
ZD, Hsieh, Kadam, arXiv:2505.20408 [quant-ph].



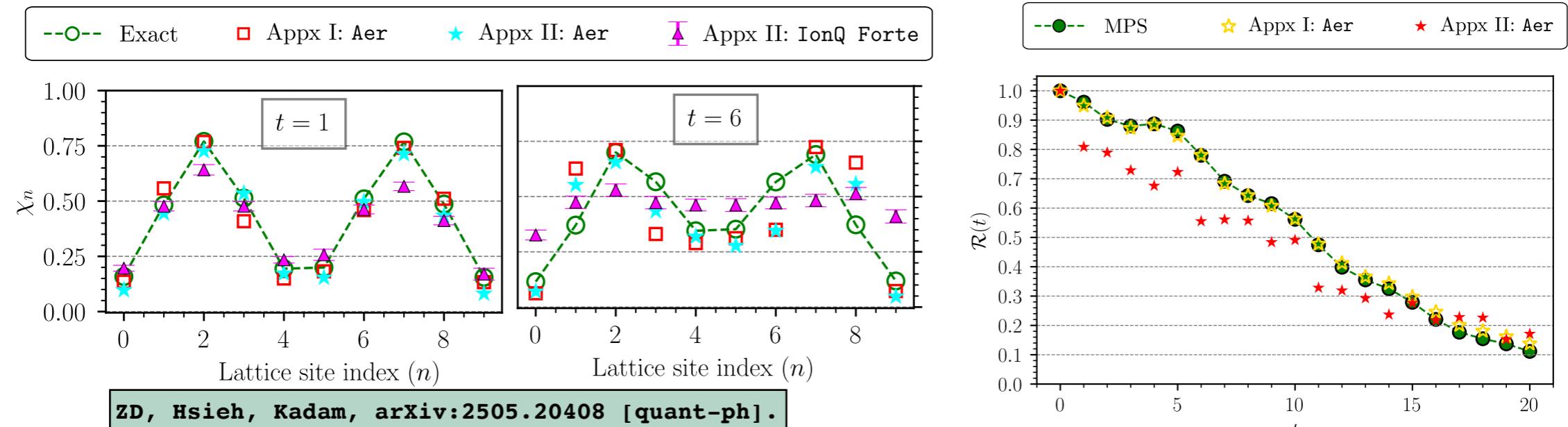
Hadron scattering in a (1+1)D Z_2 gauge theory (IonQ)



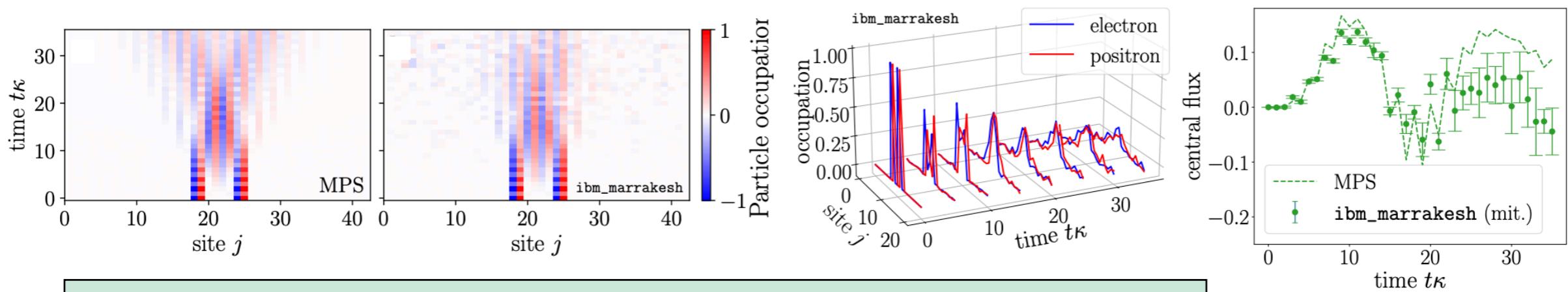
Hadron scattering in a (1+1)D U(1) quantum link model (IBM)



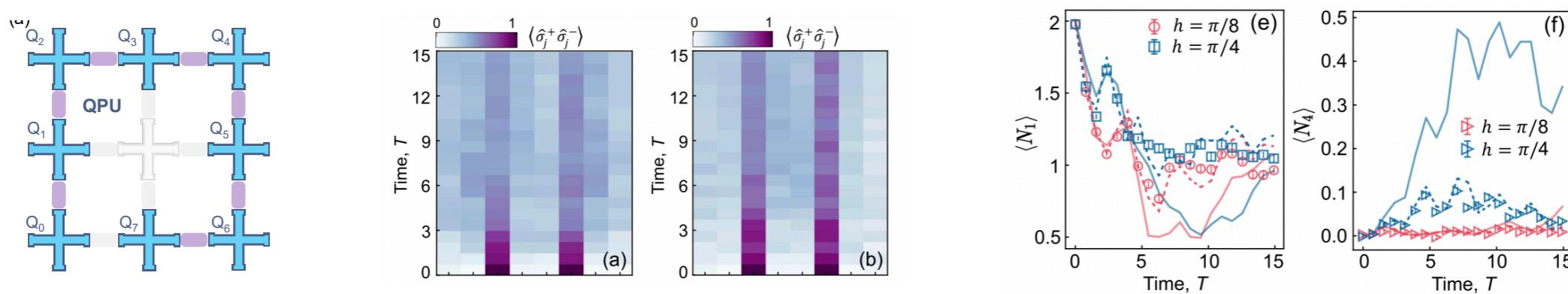
Hadron scattering in a (1+1)D Z_2 gauge theory (IonQ)



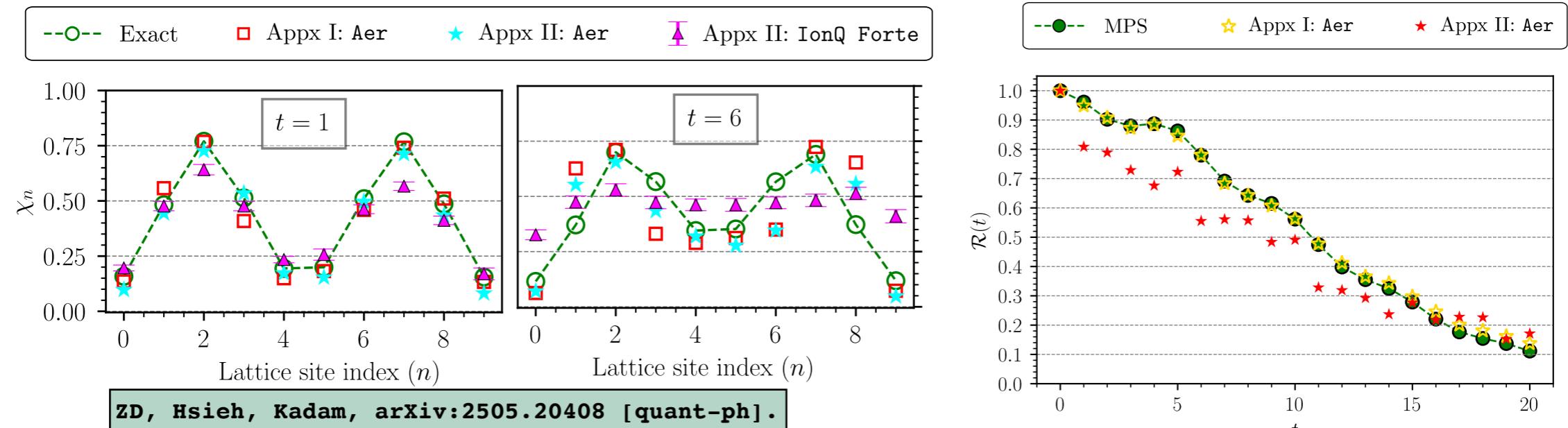
Hadron scattering in a (1+1)D U(1) quantum link model (IBM)



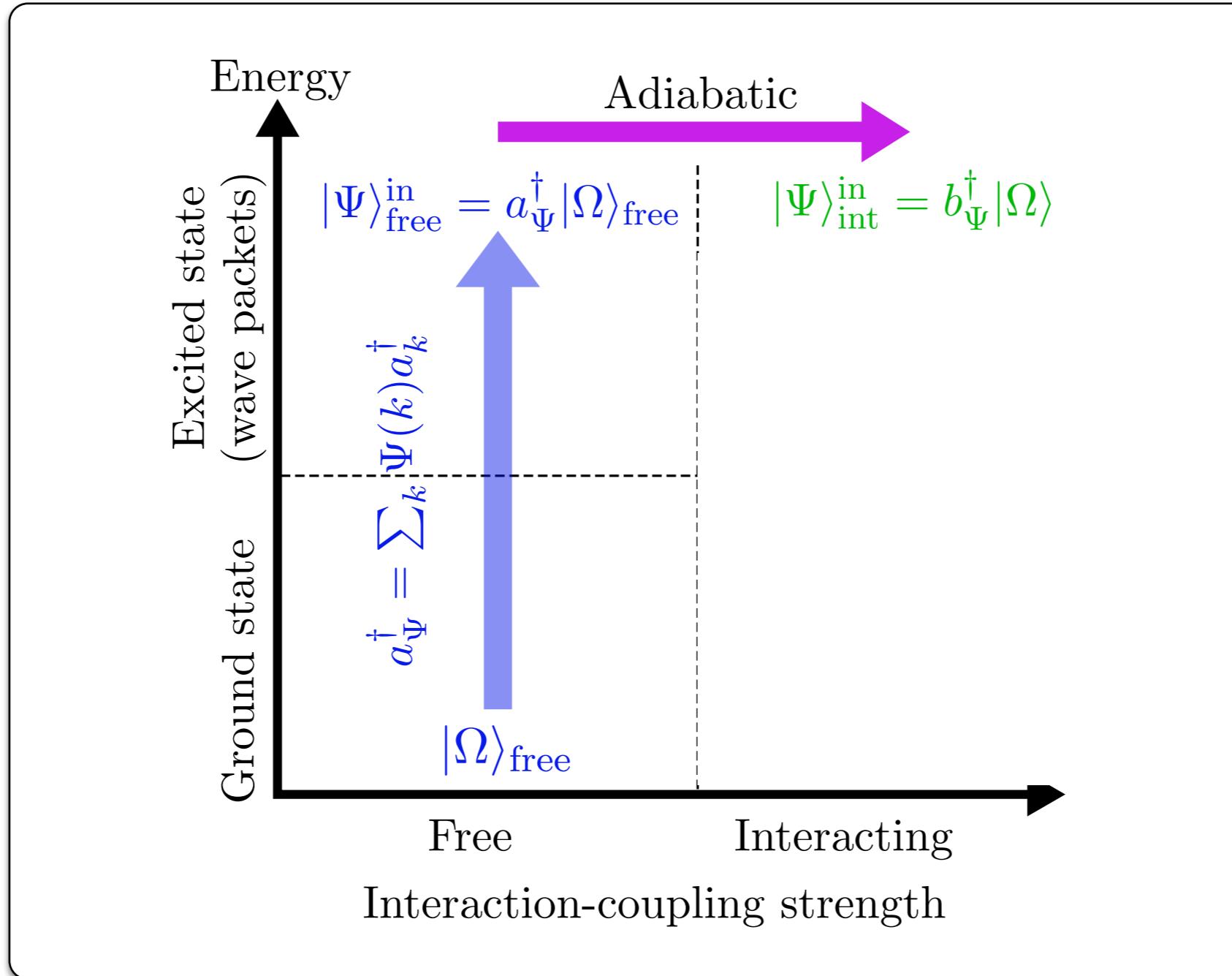
Meson scattering in a Z_2 floquet system on a superconducting chip



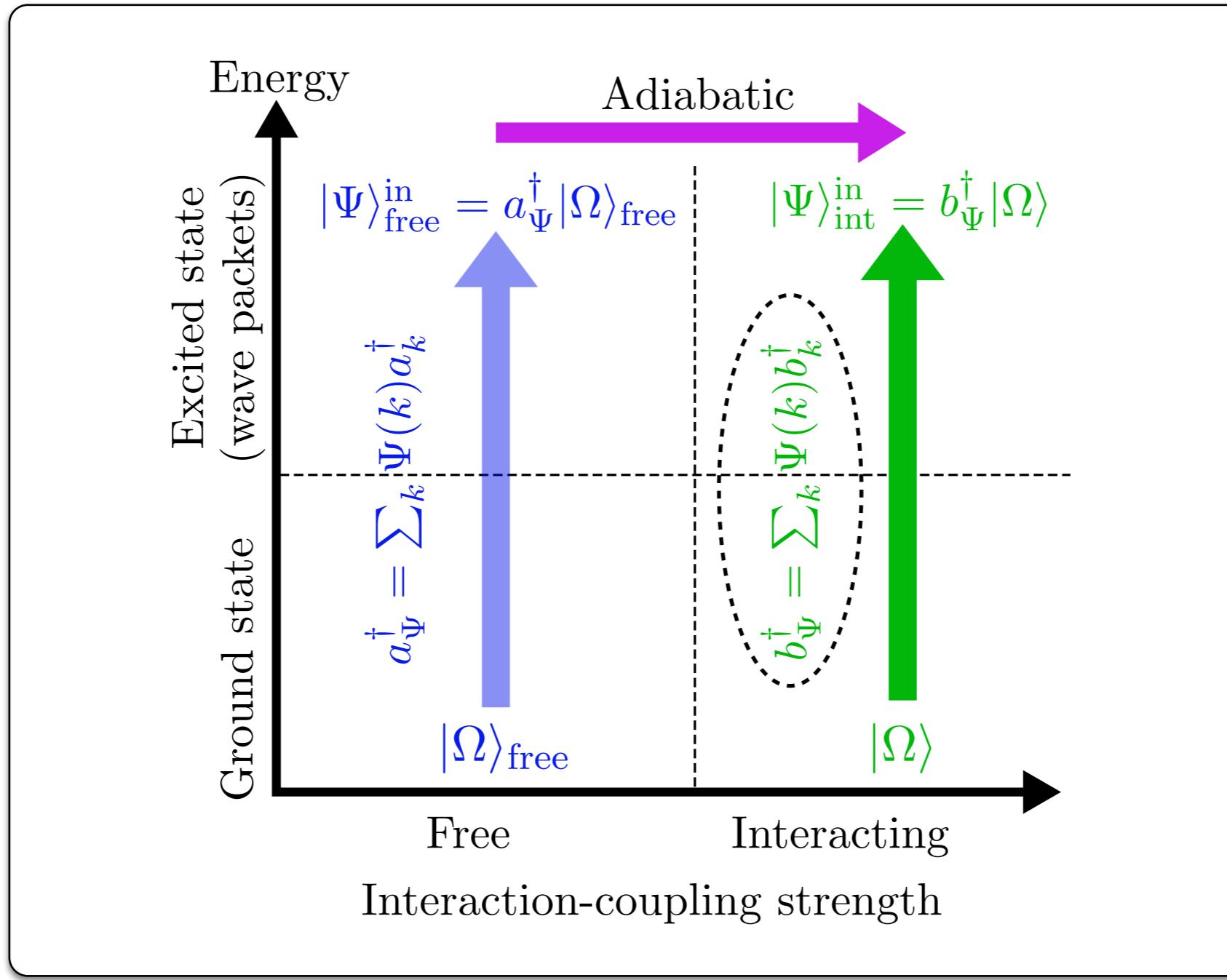
Hadron scattering in a (1+1)D Z_2 gauge theory (IonQ)



OUR STRATEGY COMPARED WITH JORDAN-LEE-PRESKILL



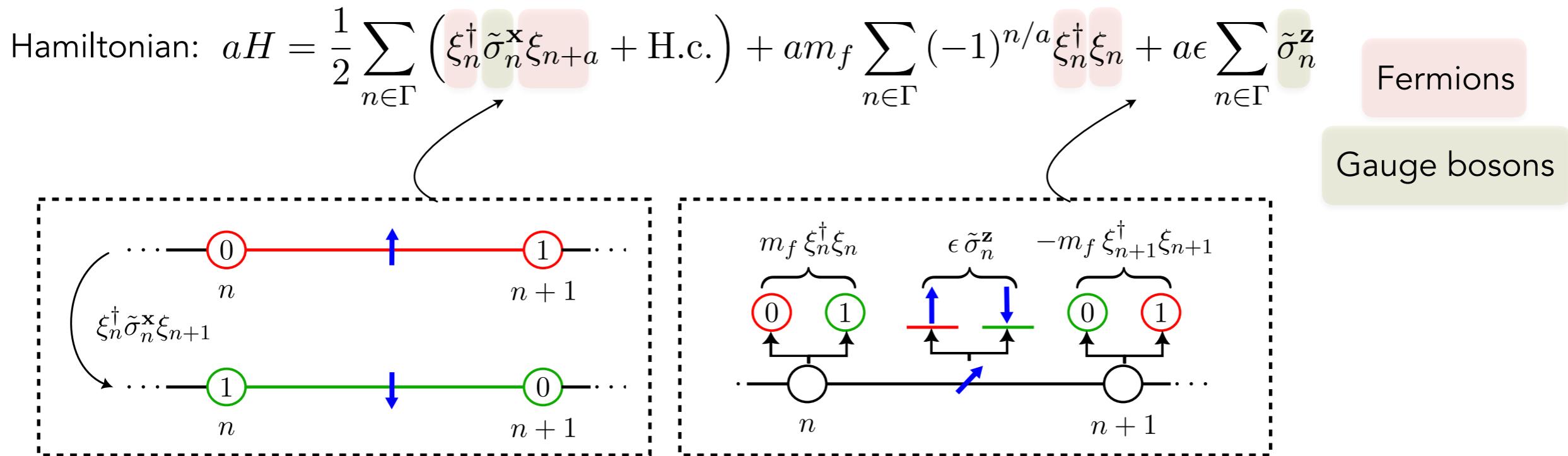
OUR STRATEGY COMPARED WITH JORDAN-LEE-PRESKILL



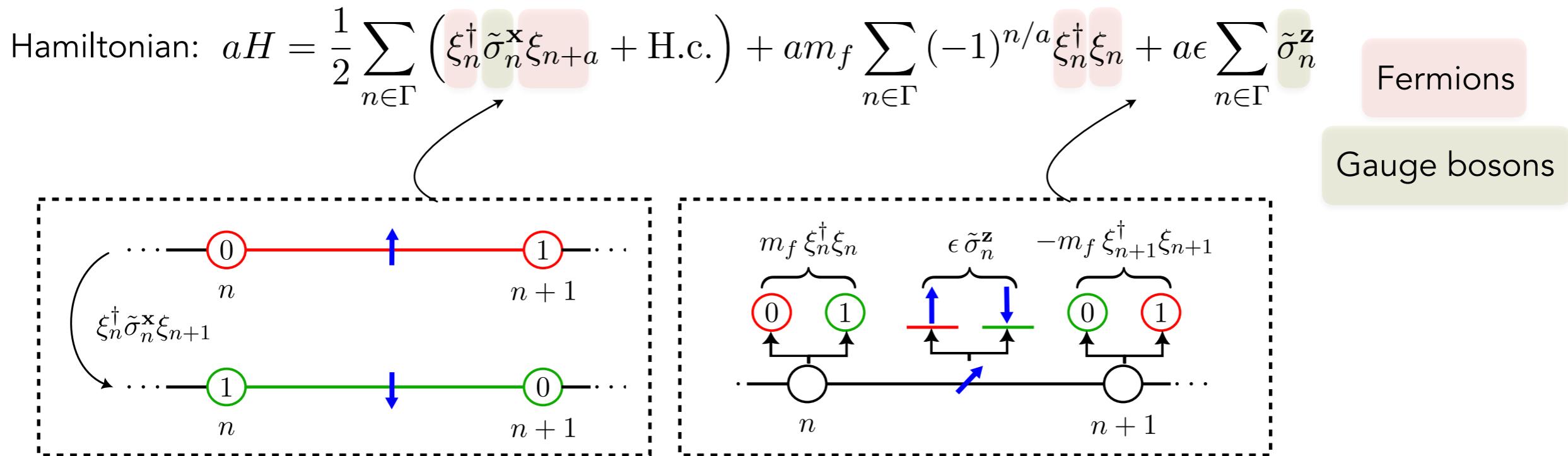
ZD, Hsieh, and Kadam, *Quantum* 8, 1520 (2024) and arXiv:2505.20408 [quant-ph].

Beside Jordan, Lee, Preskill, *Science* 336, 1130–1133 (2012), check out other recent interesting digital algorithms for hadronic wave-packet creation in: Turco, Quinta, Seixas, and Omar, arXiv:2305.07692 [quant-ph], Kreshchuk, Vary, Love, arXiv:2310.13742 [quant-ph], Chai, Crippa, Jansen, Kühn, Pascuzzi, Tacchino, and Tavernelli, arXiv:2312.02272 [quant-ph], Farrell, Illa, Ciavarella, and Savage, arXiv:2401.08044 [quant-ph].

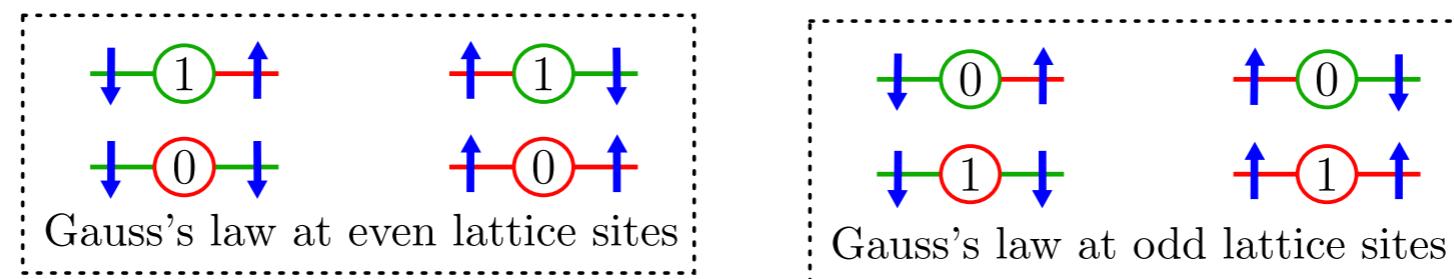
OUR TESTING GROUND: Z_2 LATTICE GAUGE THEORY COUPLED TO FERMIONS IN 1+1 D



OUR TESTING GROUND: Z_2 LATTICE GAUGE THEORY COUPLED TO FERMIONS IN 1+1 D



Gauss's law: $G_n |\psi_{\text{phys}}\rangle = g |\psi_{\text{phys}}\rangle \quad \forall n \text{ with } G_n = \tilde{\sigma}_n^z \tilde{\sigma}_{n-1}^z e^{i\pi \left[\xi_n^\dagger \xi_n - \frac{1-(-1)^n}{2} \right]}$



AN ANSATZ FOR THE MESON WAVE PACKET

$$\Psi(k) = \mathcal{N}_\Psi \exp(-ik\mu) \exp\left(-\frac{(k-k_0)^2}{4\sigma^2}\right)$$

$$b_\Psi^\dagger = \sum_k \Psi(k) b_k^\dagger$$

$$\Psi(k = -\frac{\pi}{3}) b_{k=-\frac{\pi}{3}}^\dagger$$

$$\Psi(k = 0) b_{k=0}^\dagger$$

$$\Psi(k = \frac{\pi}{3}) b_{k=\frac{\pi}{3}}^\dagger$$

$$\Gamma_0^{(j)}$$

$$\Gamma_1^{(j)}$$

$j = 1$
 $j = 2$
 \vdots

$\circ \circ \circ \circ \circ \circ$
 $n = 0 \ 1 \ 2 \ 3 \ 4 \ 5$

$\circ \circ \circ \circ \circ \circ$
 $n = 0 \ 1 \ 2 \ 3 \ 4 \ 5$

Bare meson
operators $\mathcal{M}_{m,n}$

Single-particle k -momentum
meson creation operator:

$$b_k^{(j)\dagger} = \sum_{j'=0}^j \sum_{m,n \in \Gamma^{(j')}} C_{m,n}^{(j'),k} \mathcal{M}_{m,n}$$

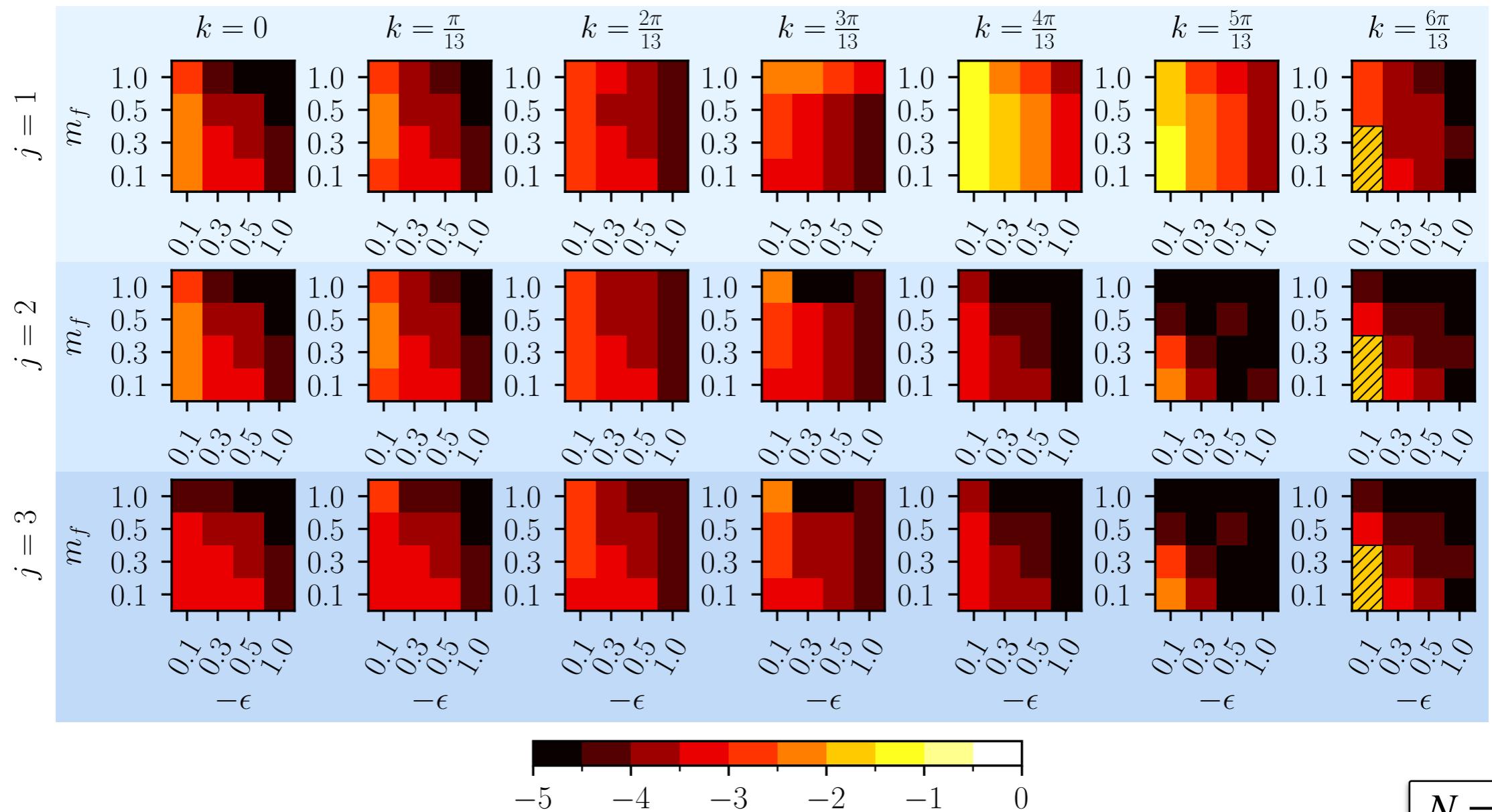
Coefficients such that short
bare mesons are favored:

$$C_{m,n}^{(j),k} = \frac{1}{\mathcal{N}} e^{-\alpha_i^{(j),k} |m-n|^2} \overline{C}_{m,n}^k \quad \text{for } m, n \in \Gamma_i^{(j)}$$

HOW WELL DOES THE ANSATZ WORK?

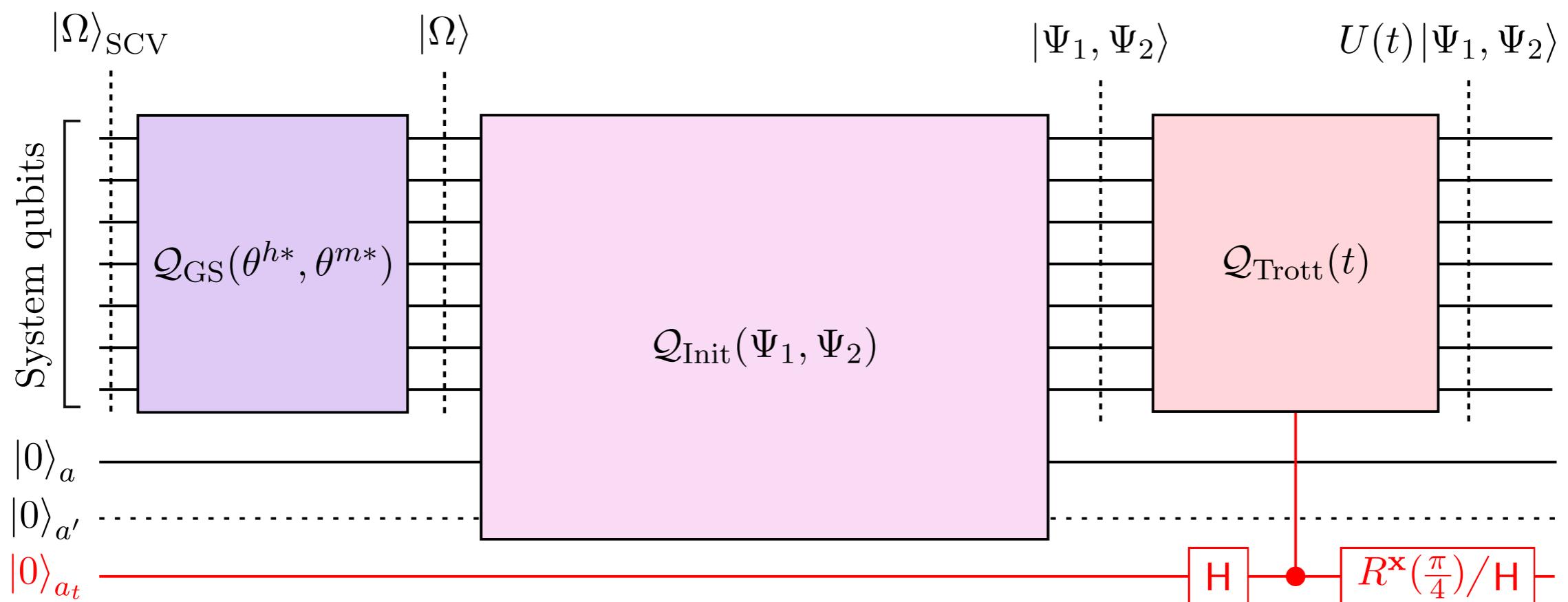
Increasing momentum

$$\log_{10}(1 - F)$$

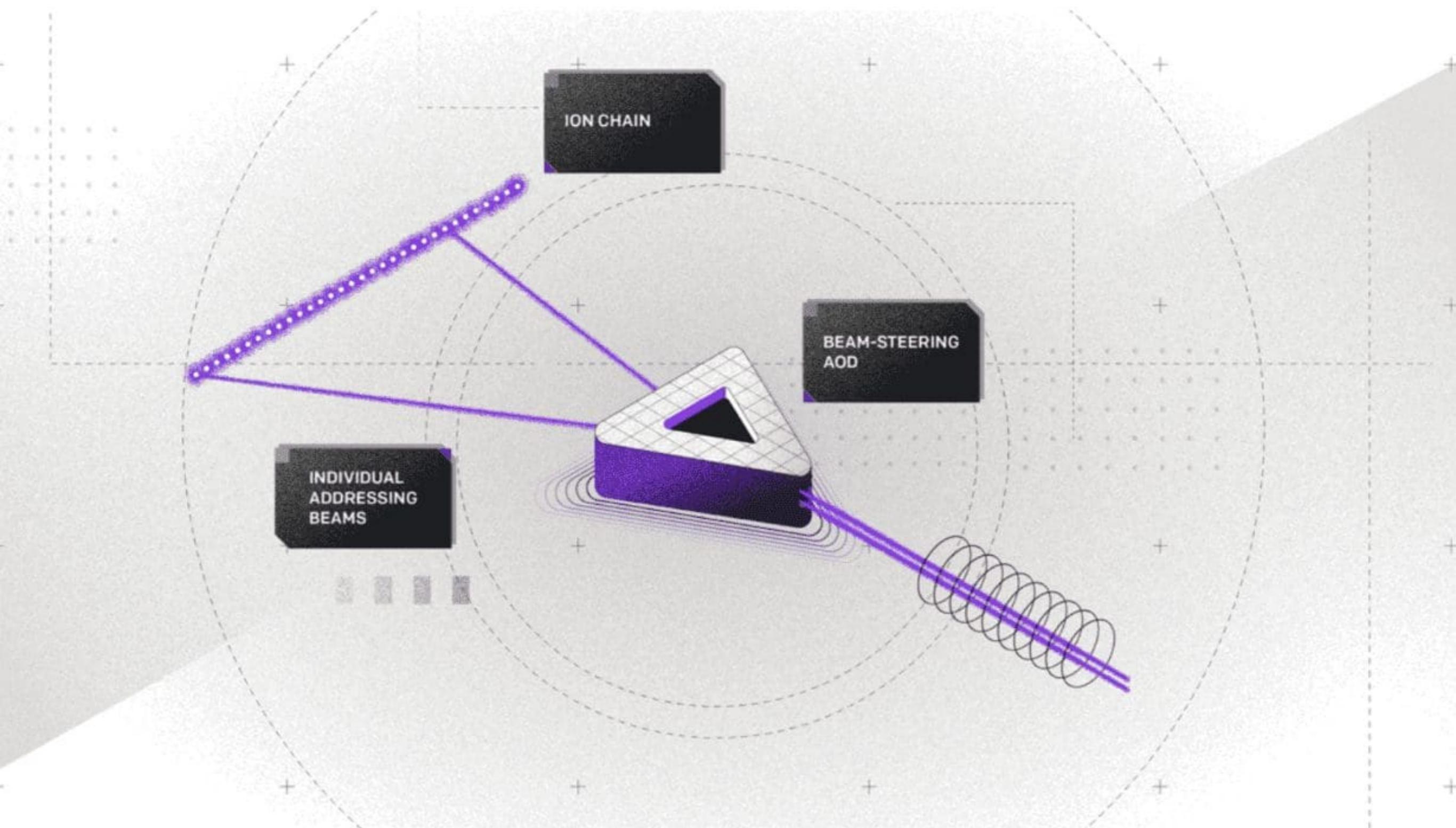


Fidelities are measured by comparing to MPS results.

OUR QUANTUM CIRCUIT FOR HADRON SCATTERING



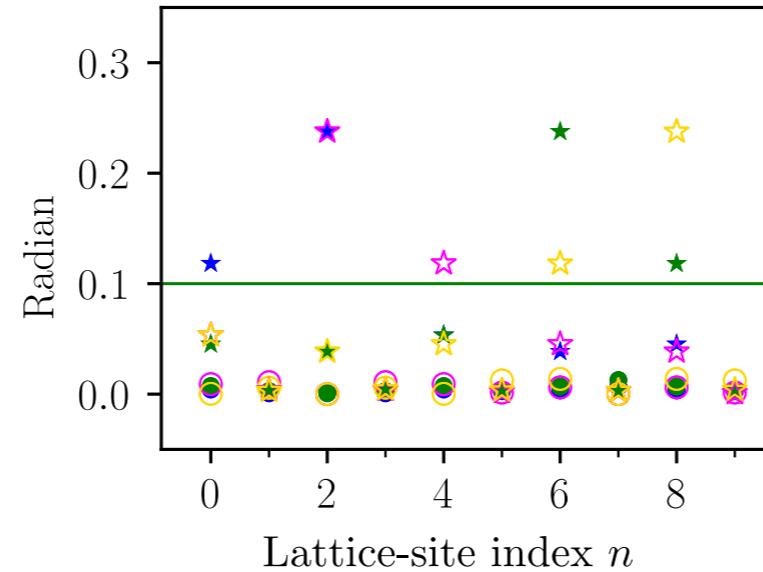
SOME EMULATOR AND HARDWARE RESULTS



IonQ Forte quantum processor with 32 qubits

HOW WELL CAN WE PREPARE TWO WAVE PACKETS?

- $\text{Re}\left(\frac{\pi}{4}C_{n,n}\right)$ ★ $\frac{\pi}{8}|C_{n,n+1}|$ (Forward) █ Ψ_1
- $\text{Im}\left(\frac{\pi}{4}C_{n,n}\right)$ ☆ $\frac{\pi}{8}|C_{n-1,n}|$ (Backward) █ Ψ_2

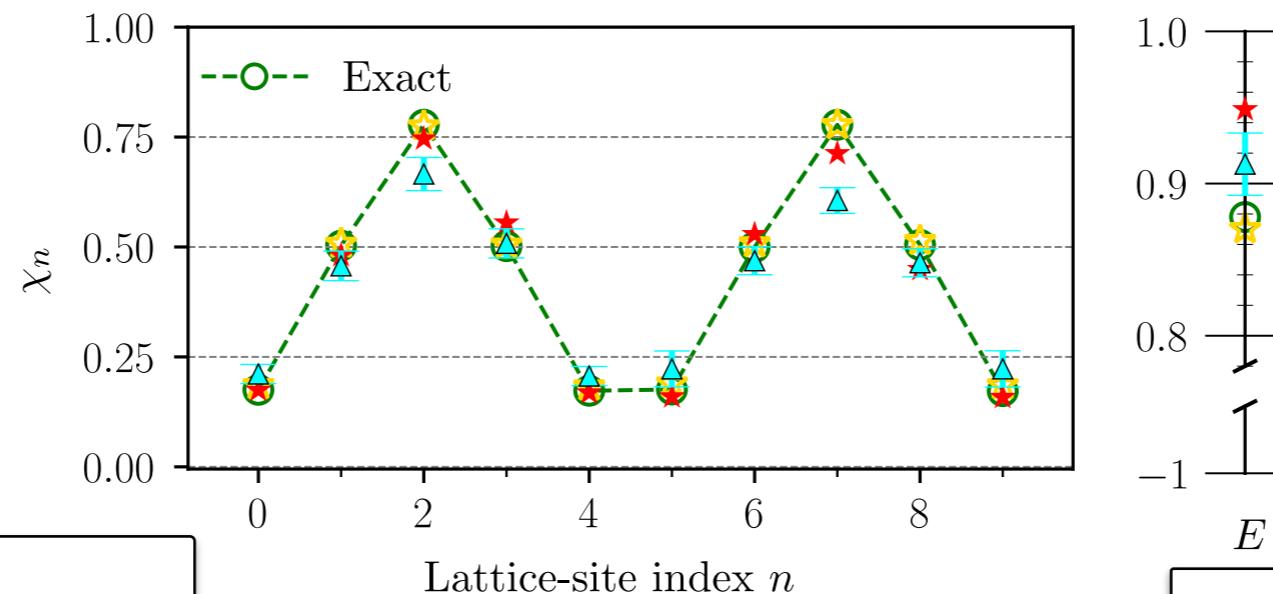


$N = 10$

★ Appx I: Aer

★ Appx II: Aer

▲ Appx II: IonQ Forte



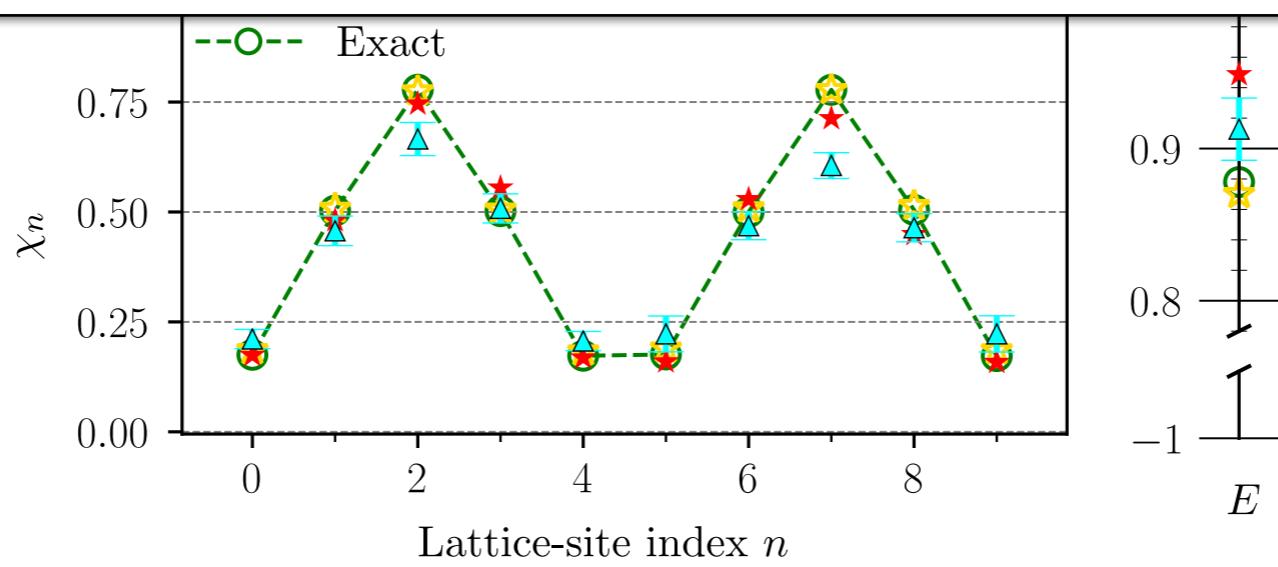
$$\chi_n = \begin{cases} \langle \psi_n^\dagger \psi_n \rangle & \text{if } n \in \text{even}, \\ 1 - \langle \psi_n^\dagger \psi_n \rangle & \text{if } n \in \text{odd} \end{cases}$$

$E = \langle \tilde{\sigma}^z \rangle$

HOW WELL CAN WE PREPARE TWO WAVE PACKETS?

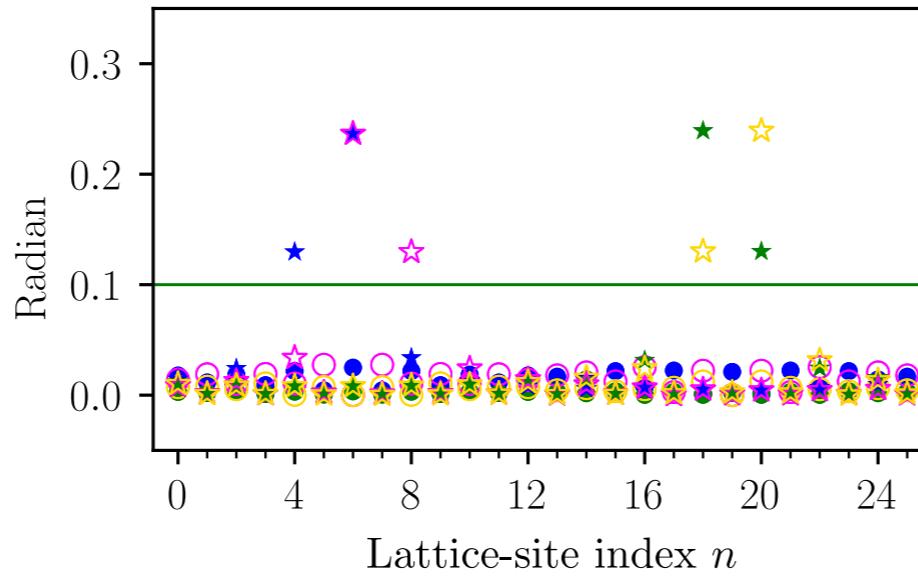
- $\text{Re}\left(\frac{\pi}{4}C_{n,n}\right)$ ★ $\frac{\pi}{8}|C_{n,n+1}|$ (Forward) ■ Ψ_1
- $\text{Im}\left(\frac{\pi}{4}C_{n,n}\right)$ ☆ $\frac{\pi}{8}|C_{n-1,n}|$ (Backward) ■ Ψ_2

N_P	Appx	Qubits	Single-qubit gates (raw/transpiled)	CNOT gates (raw/transpiled)
5	I	13	12757/13343	11324/7315
	II	12	310/369	236/167

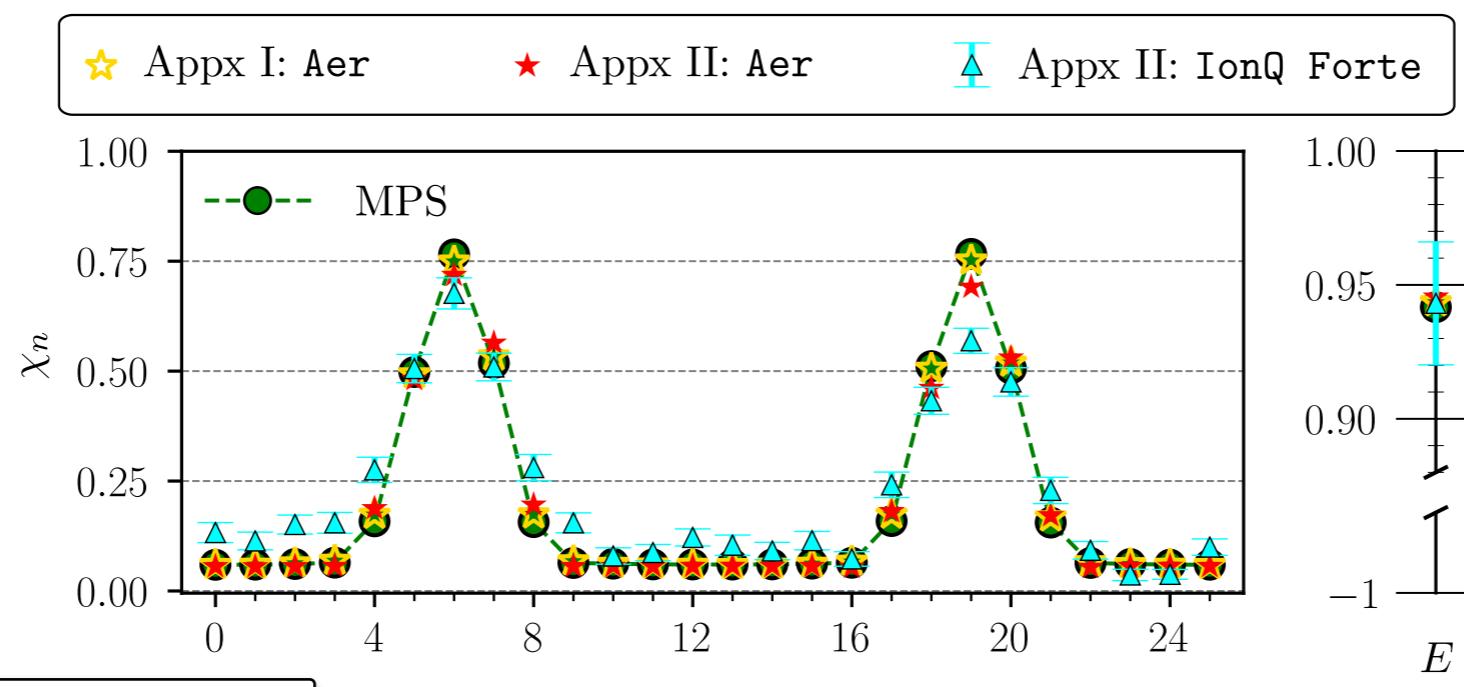


HOW WELL CAN WE PREPARE TWO WAVE PACKETS?

- $\text{Re}\left(\frac{\pi}{4}C_{n,n}\right)$ ★ $\frac{\pi}{8}|C_{n,n+1}|$ (Forward) ■ Ψ_1
- $\text{Im}\left(\frac{\pi}{4}C_{n,n}\right)$ ☆ $\frac{\pi}{8}|C_{n-1,n}|$ (Backward) ■ Ψ_2



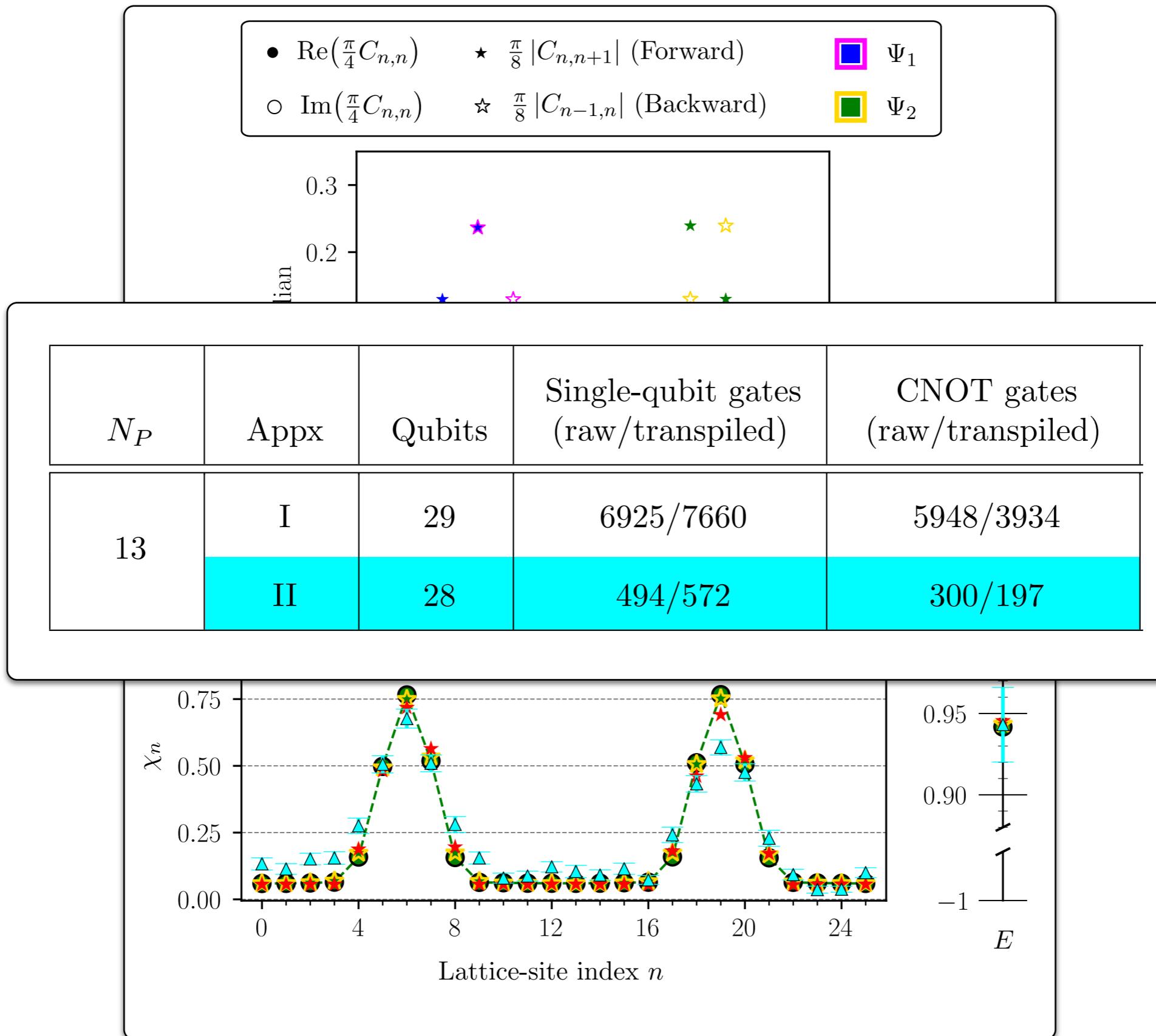
$N = 26$



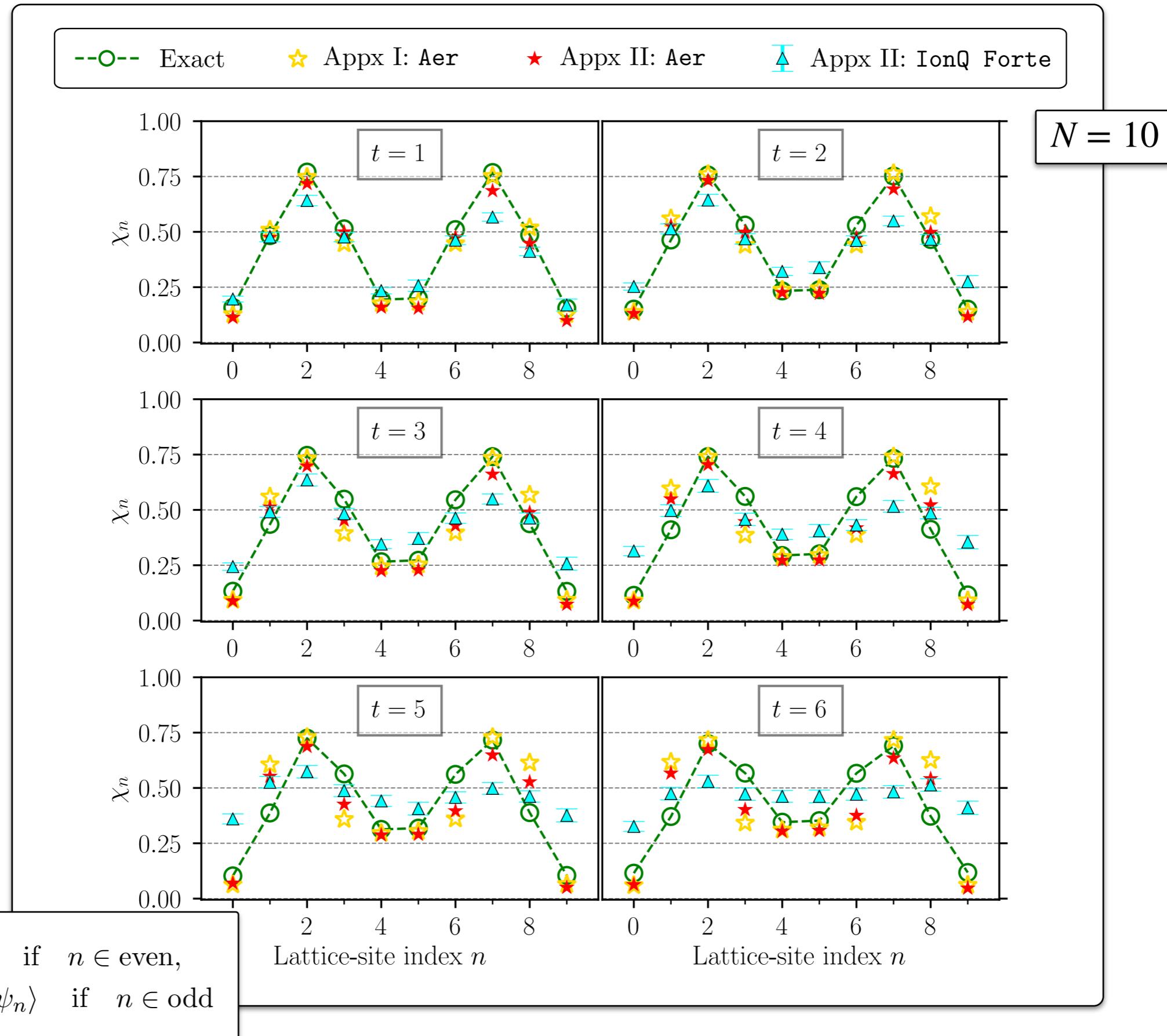
$$\chi_n = \begin{cases} \langle \psi_n^\dagger \psi_n \rangle & \text{if } n \in \text{even}, \\ 1 - \langle \psi_n^\dagger \psi_n \rangle & \text{if } n \in \text{odd} \end{cases}$$

$$E = \langle \tilde{\sigma}^z \rangle$$

HOW WELL CAN WE PREPARE TWO WAVE PACKETS?

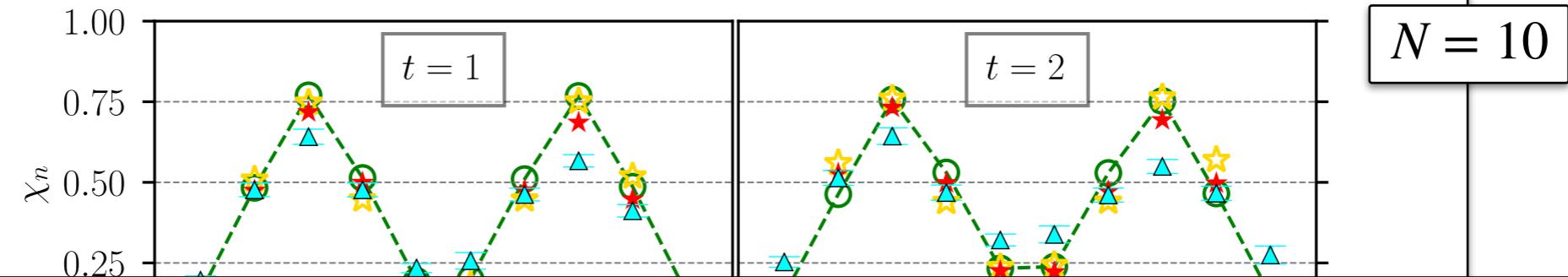


HOW FAR CAN WE EVOLVE THE TWO WAVE PACKETS?

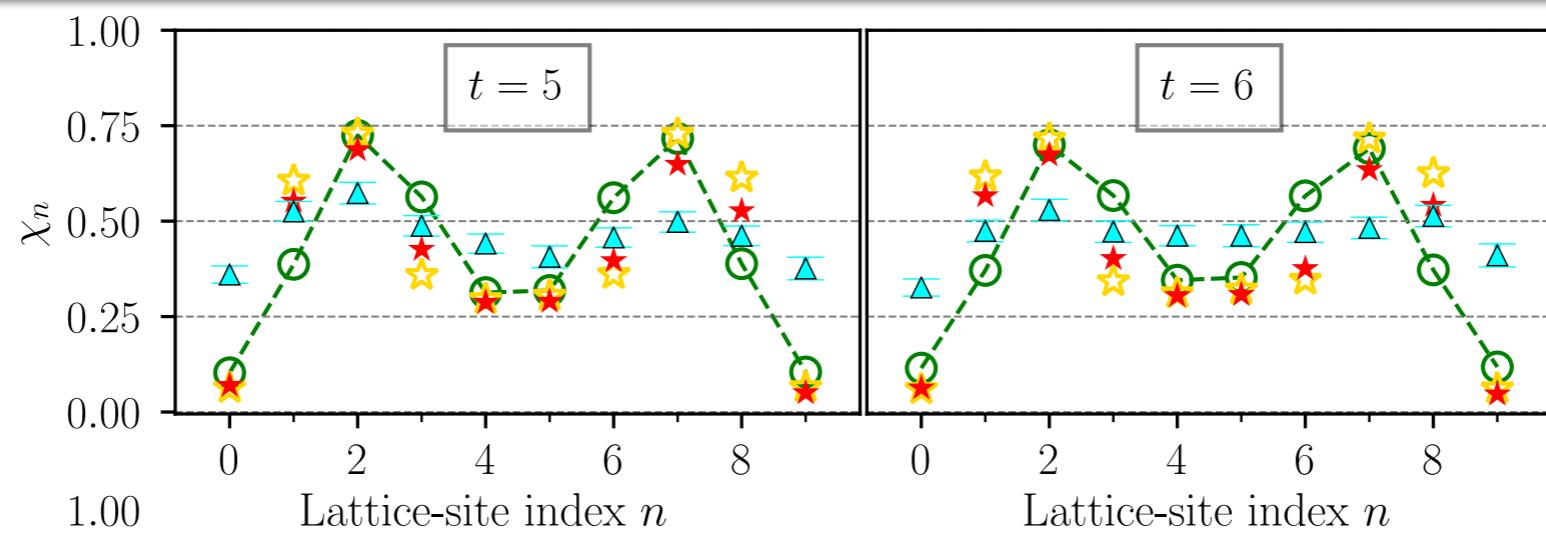


HOW FAR CAN WE EVOLVE THE TWO WAVE PACKETS?

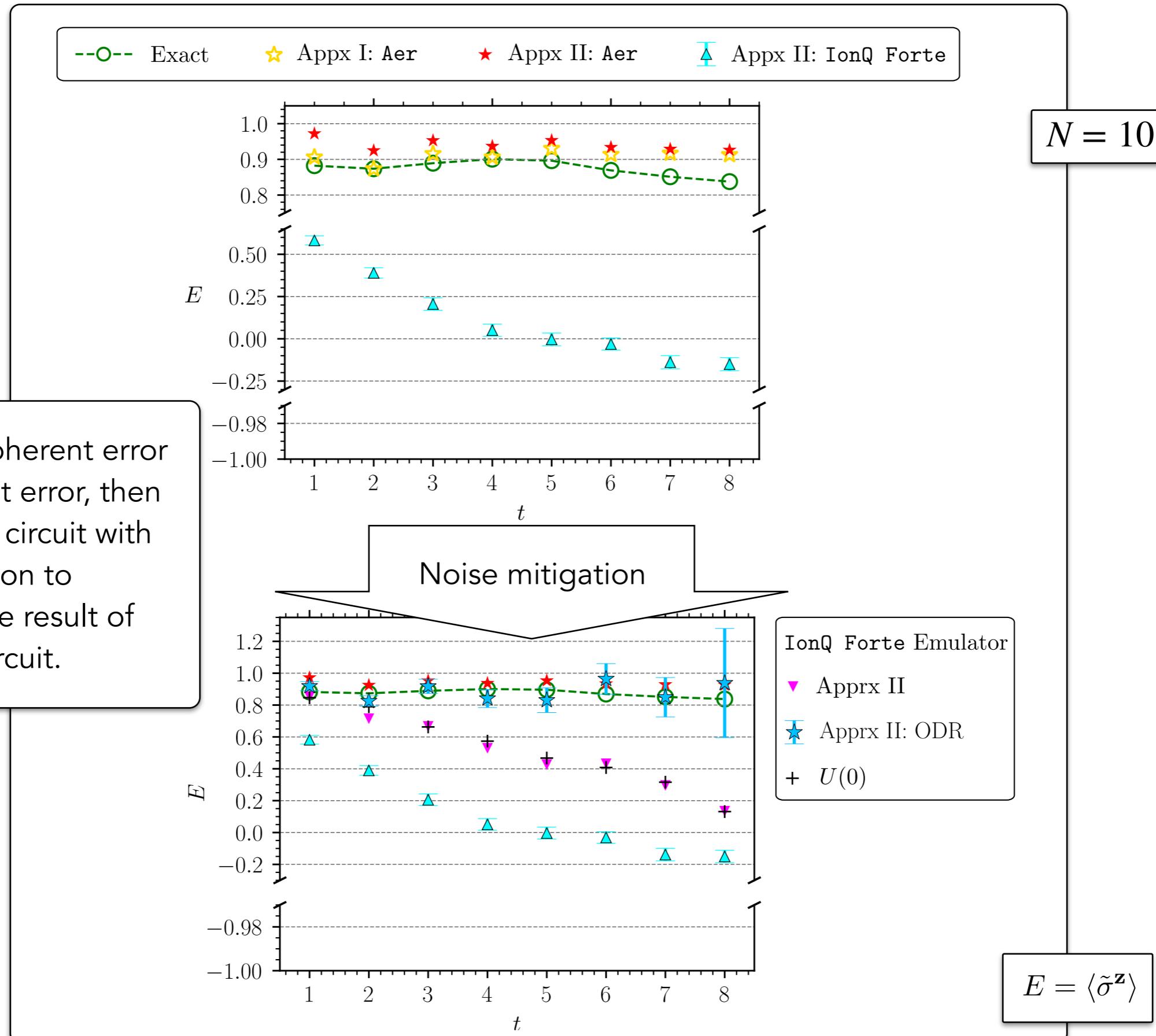
---○--- Exact ★ Appx I: Aer ★ Appx II: Aer ▲ Appx II: IonQ Forte



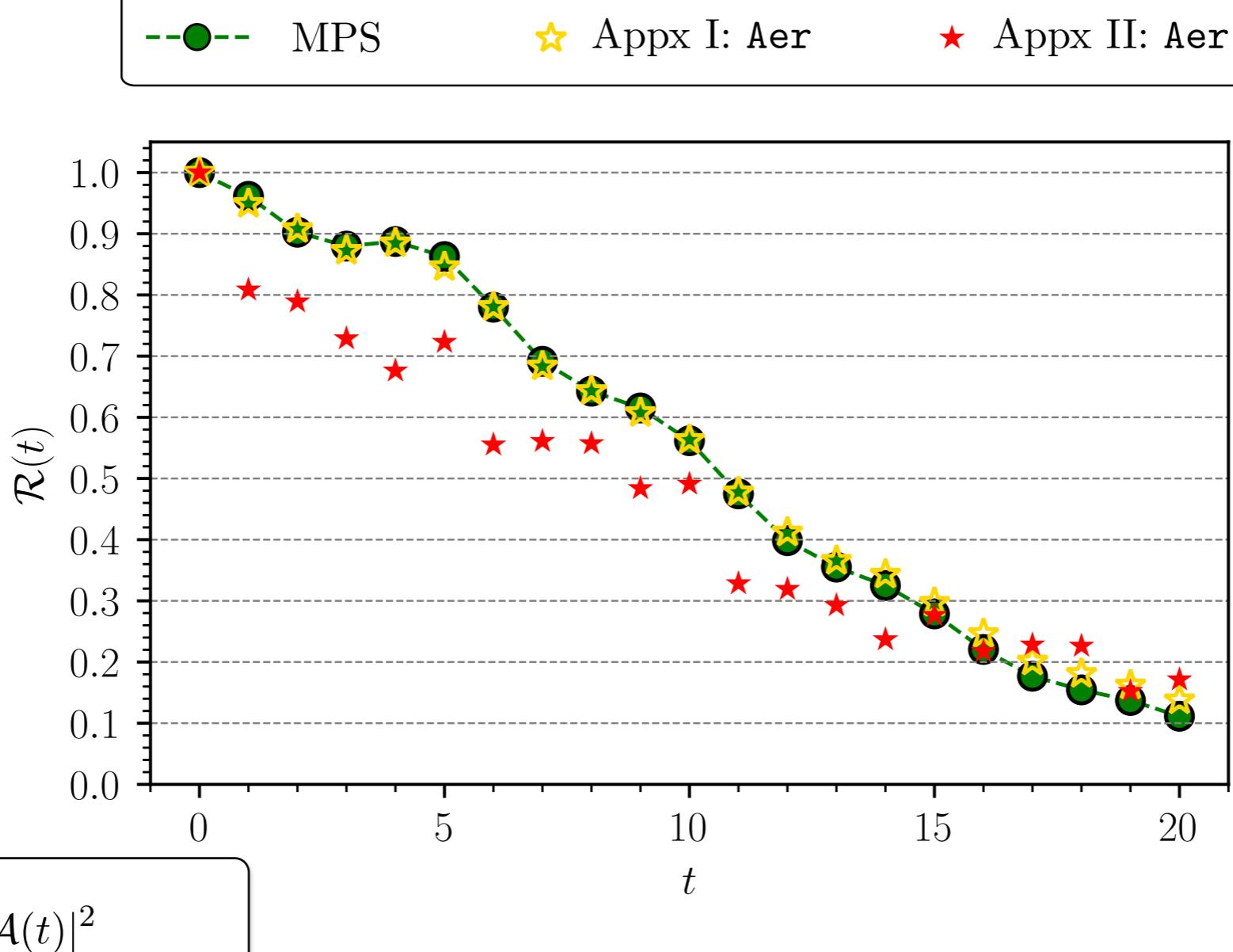
t	1	2	3	4	5	6	7	8
Single-qubit gates	573	771	969	1167	1365	1563	1761	1959
CNOT gates	227	287	347	407	467	527	587	647



HOW FAR CAN WE EVOLVE THE TWO WAVE PACKETS?



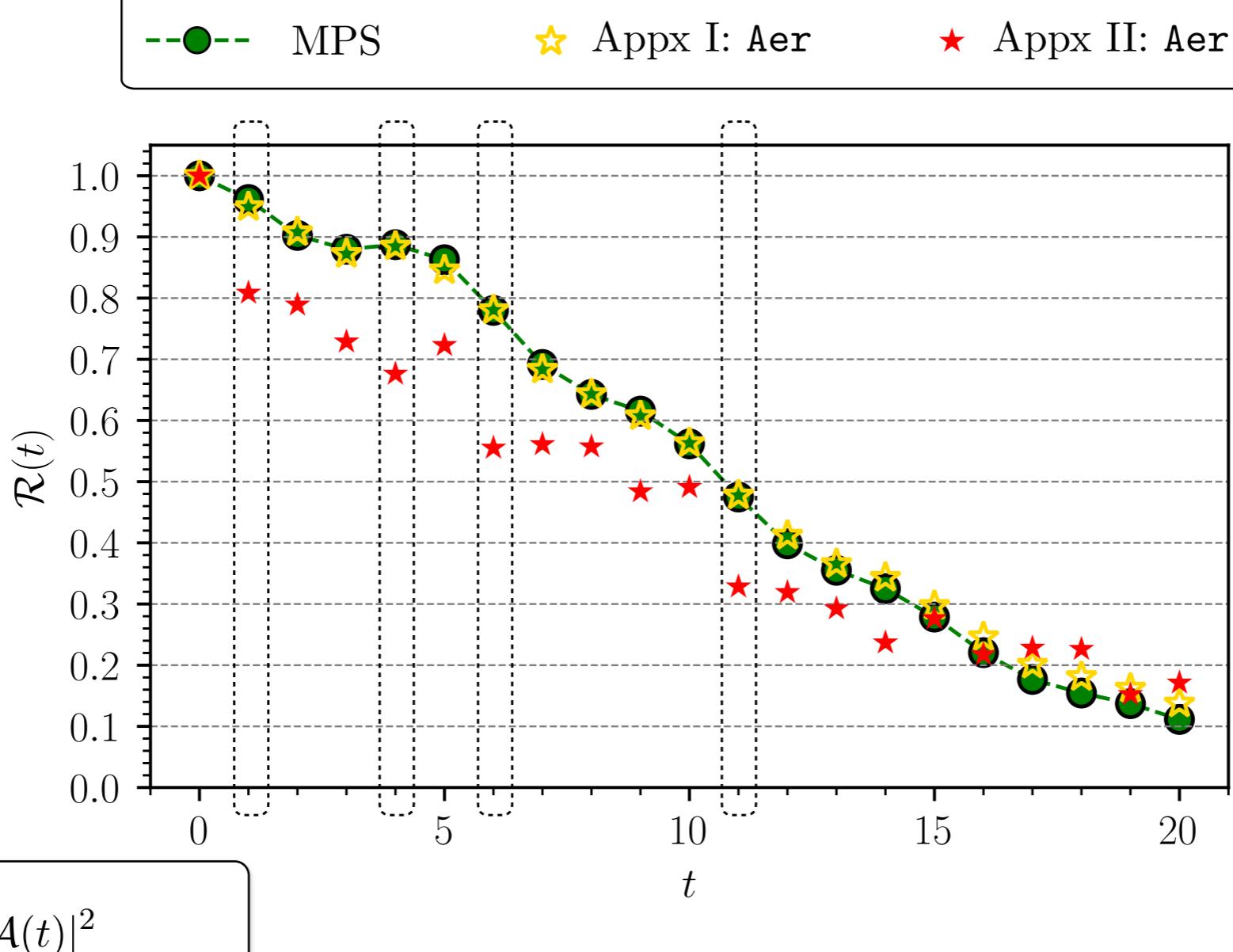
WHAT ABOUT RETURN PROBABILITY (A DIAGONAL ENTRY OF S-MATRIX)?



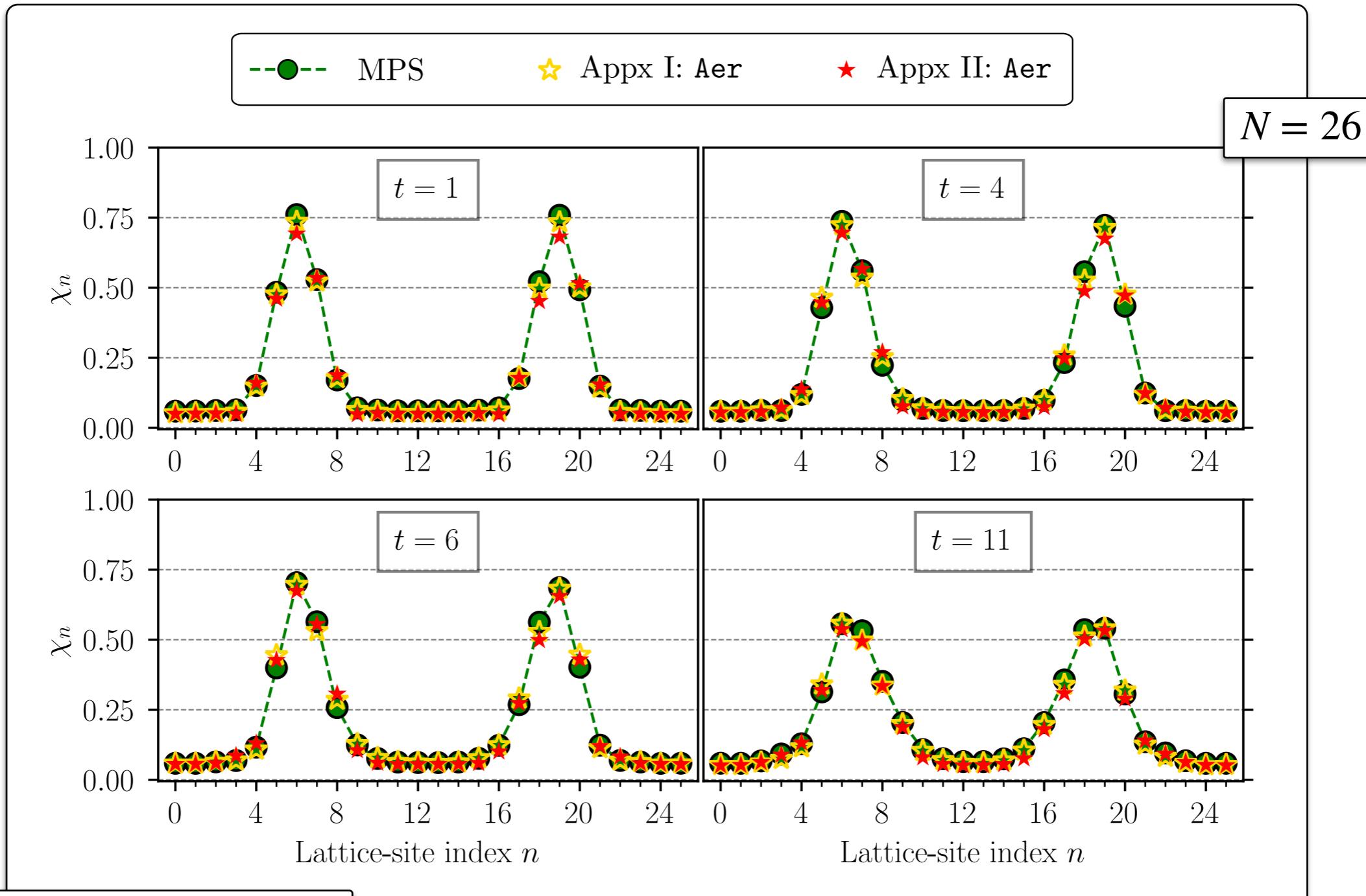
$$\mathcal{R}(t) := |\mathcal{A}(t)|^2$$

$$\mathcal{A}(t) := \langle \Psi_1, \Psi_2 | U(t) | \Psi_1, \Psi_2 \rangle$$

WHAT ABOUT RETURN PROBABILITY (A DIAGONAL ENTRY OF S-MATRIX)?



WHAT ABOUT LOCAL QUANTITIES AT TIMES $\mathcal{R}(t)$ DEVIATES?



$$\chi_n = \begin{cases} \langle \psi_n^\dagger \psi_n \rangle & \text{if } n \in \text{even}, \\ 1 - \langle \psi_n^\dagger \psi_n \rangle & \text{if } n \in \text{odd} \end{cases}$$

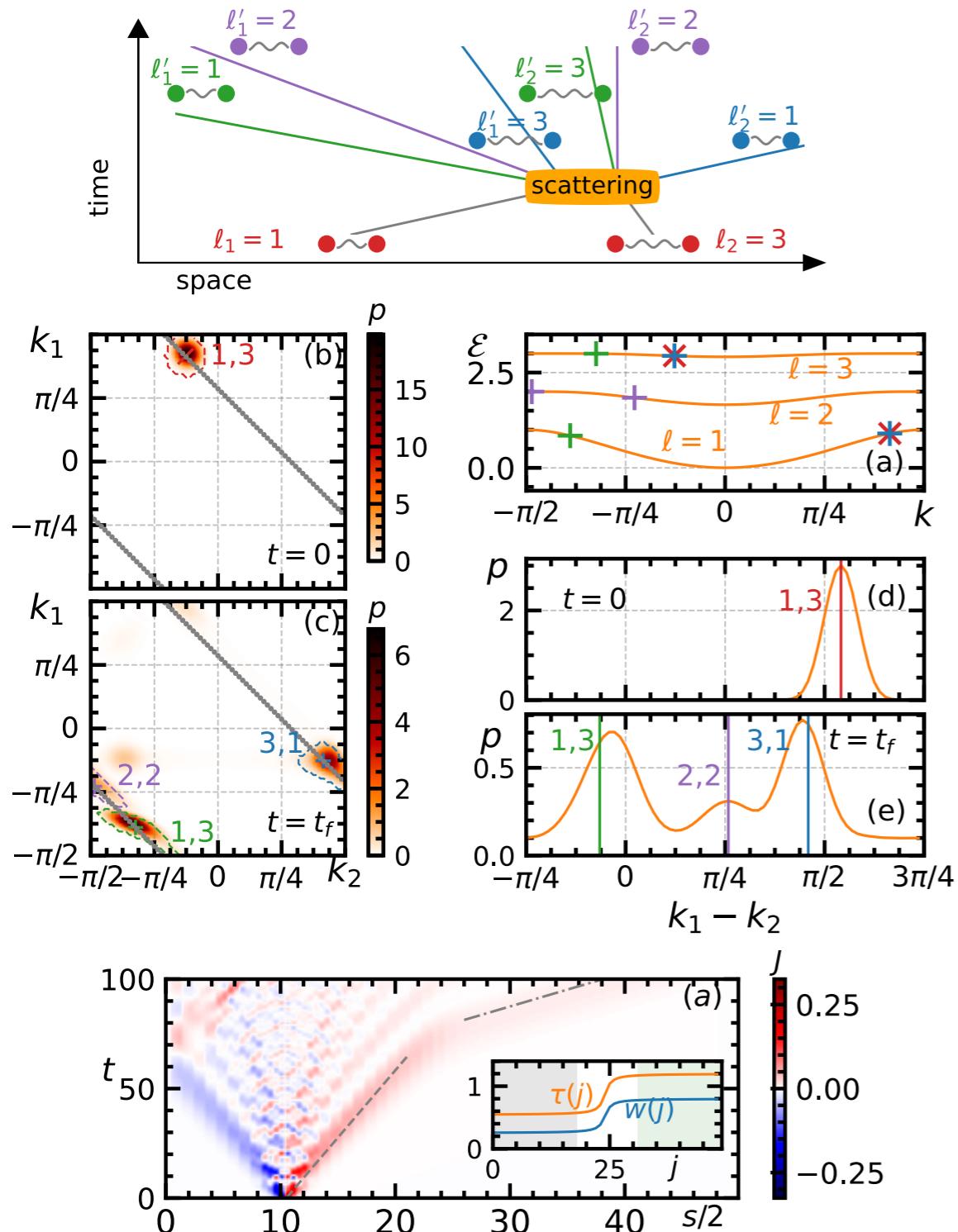
PART 0:
MOTIVATION: FIRST-PRINCIPLES SIMULATIONS OF SCATTERING

PART I:
BASIC ELEMENTS OF QUANTUM SIMULATION OF SCATTERING

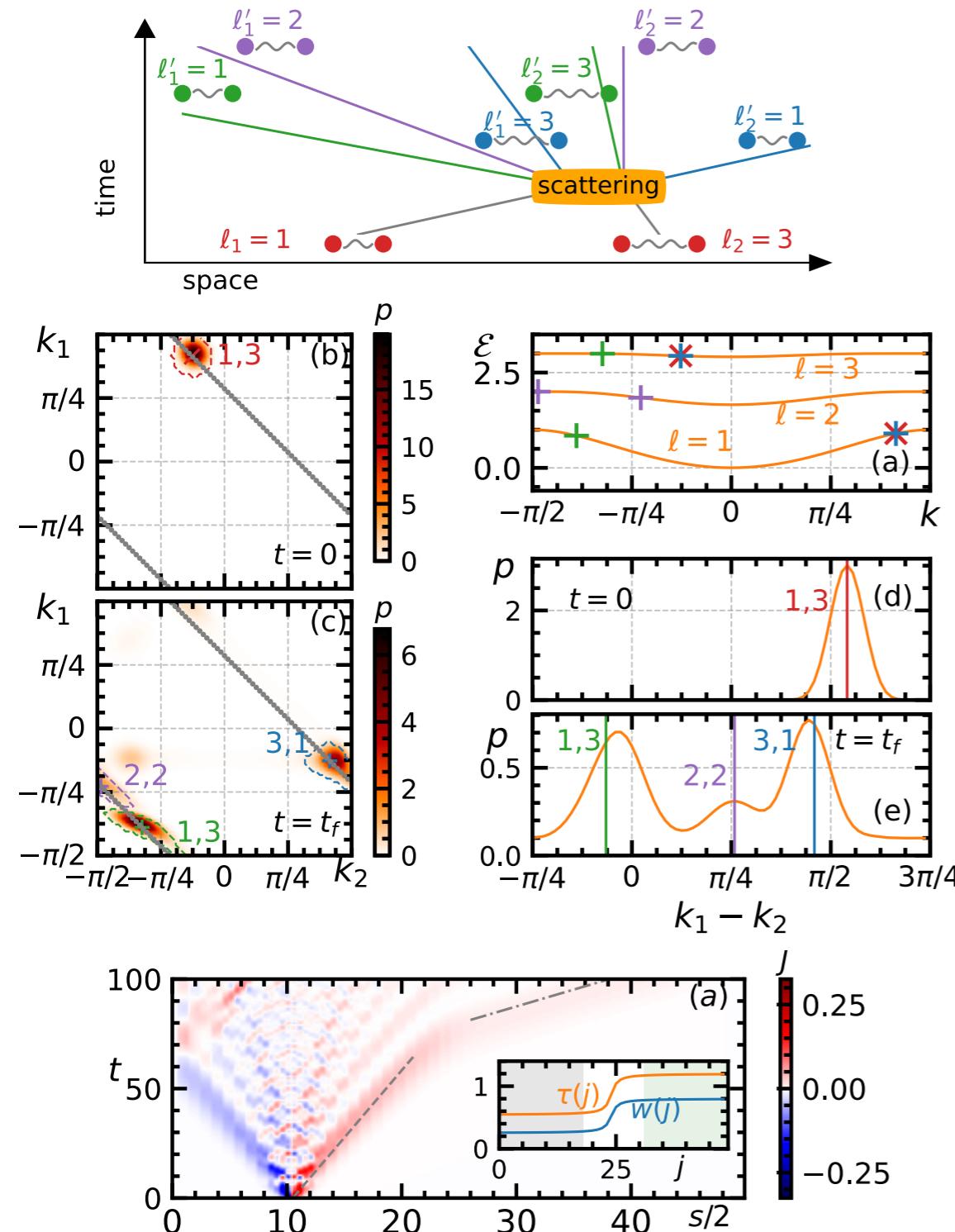
PART II:
TOWARD DIGITAL QUANTUM SIMULATIONS OF
SCATTERING

PART III:
TOWARD ANALOG QUANTUM SIMULATIONS OF
SCATTERING

A cold-atom simulation proposal for scattering
in an Ising model with a Z_2 LGT dual

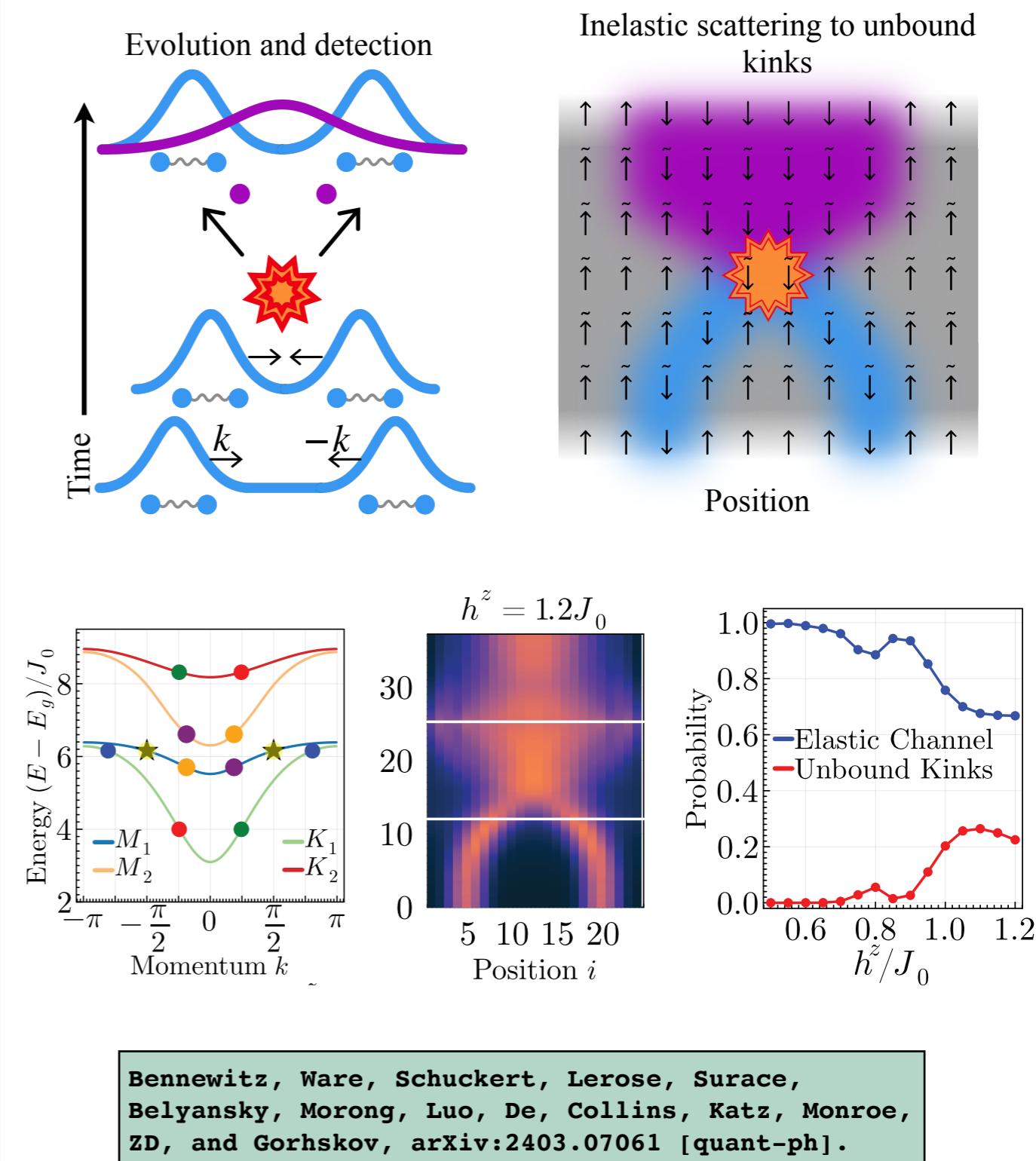


A cold-atom simulation proposal for scattering in an Ising model with a Z_2 LGT dual



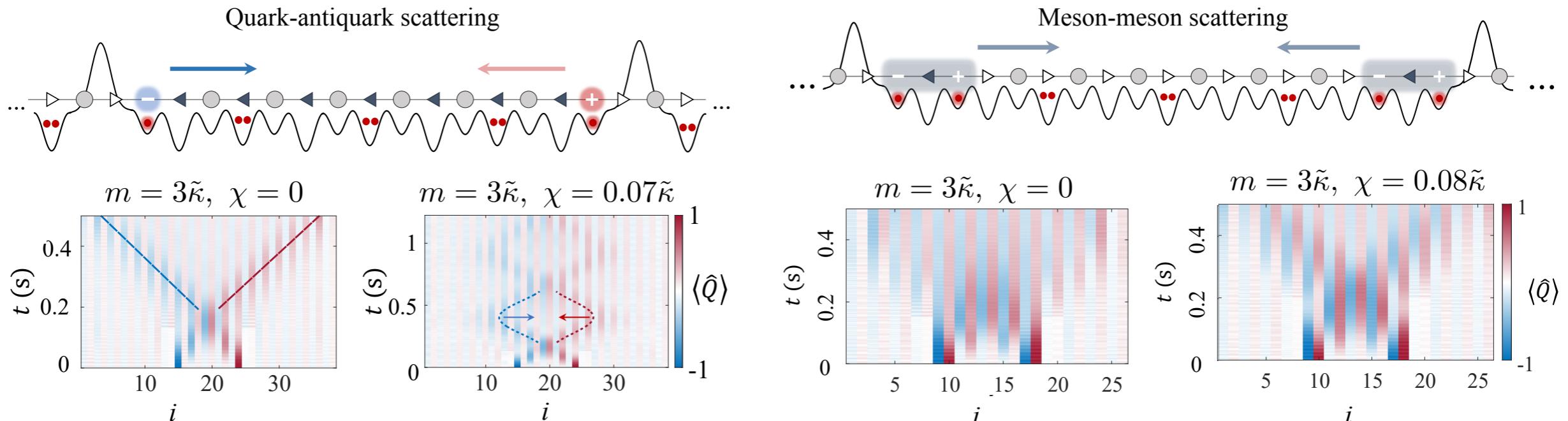
Surace and Leroose, New J. Phys. 23, 062001 (2021).

A trapped-ion simulation proposal for scattering in an Ising model with a Z_2 LGT dual



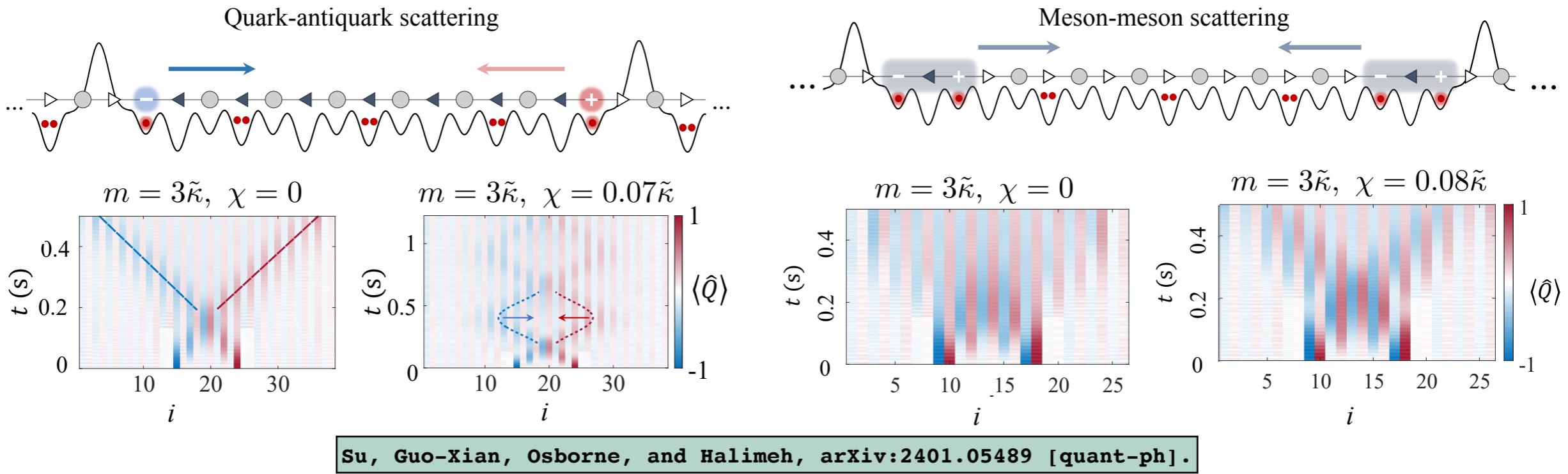
Bennewitz, Ware, Schuckert, Leroose, Surace, Belyansky, Morong, Luo, De, Collins, Katz, Monroe, ZD, and Gorshkov, arXiv:2403.07061 [quant-ph].

A cold-atom simulation proposal for scattering in a U(1) QLM in (1+1)D

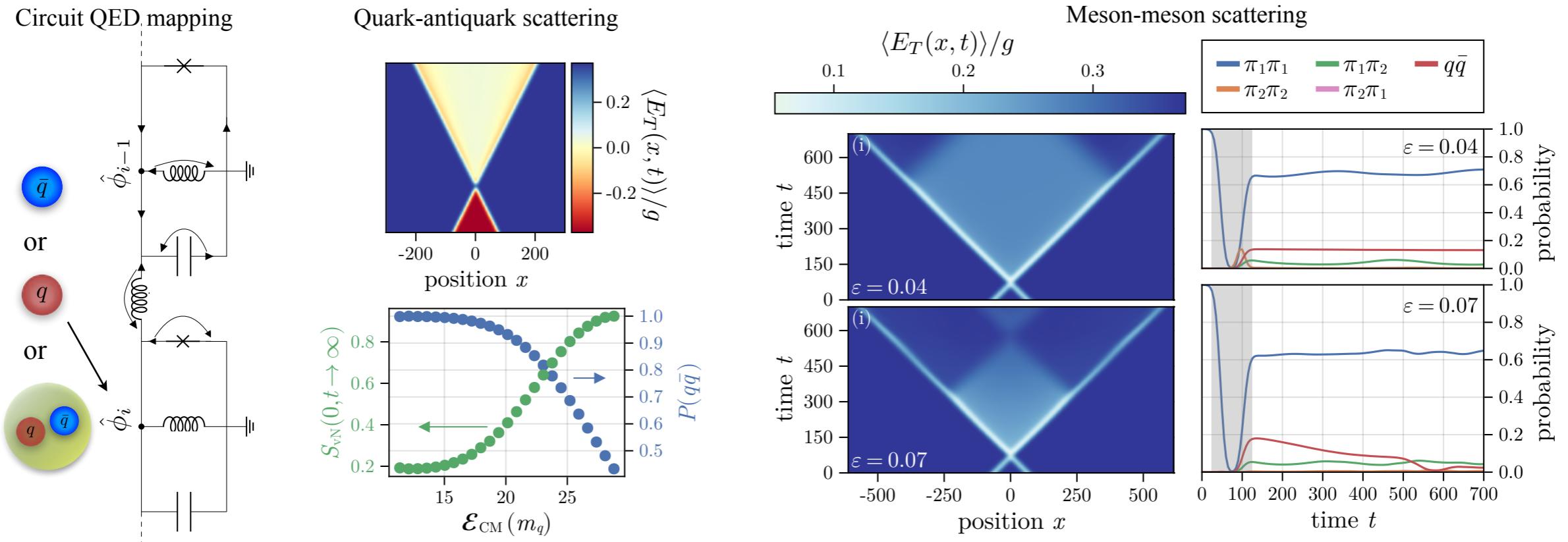


Su, Guo-Xian, Osborne, and Halimeh, arXiv:2401.05489 [quant-ph].

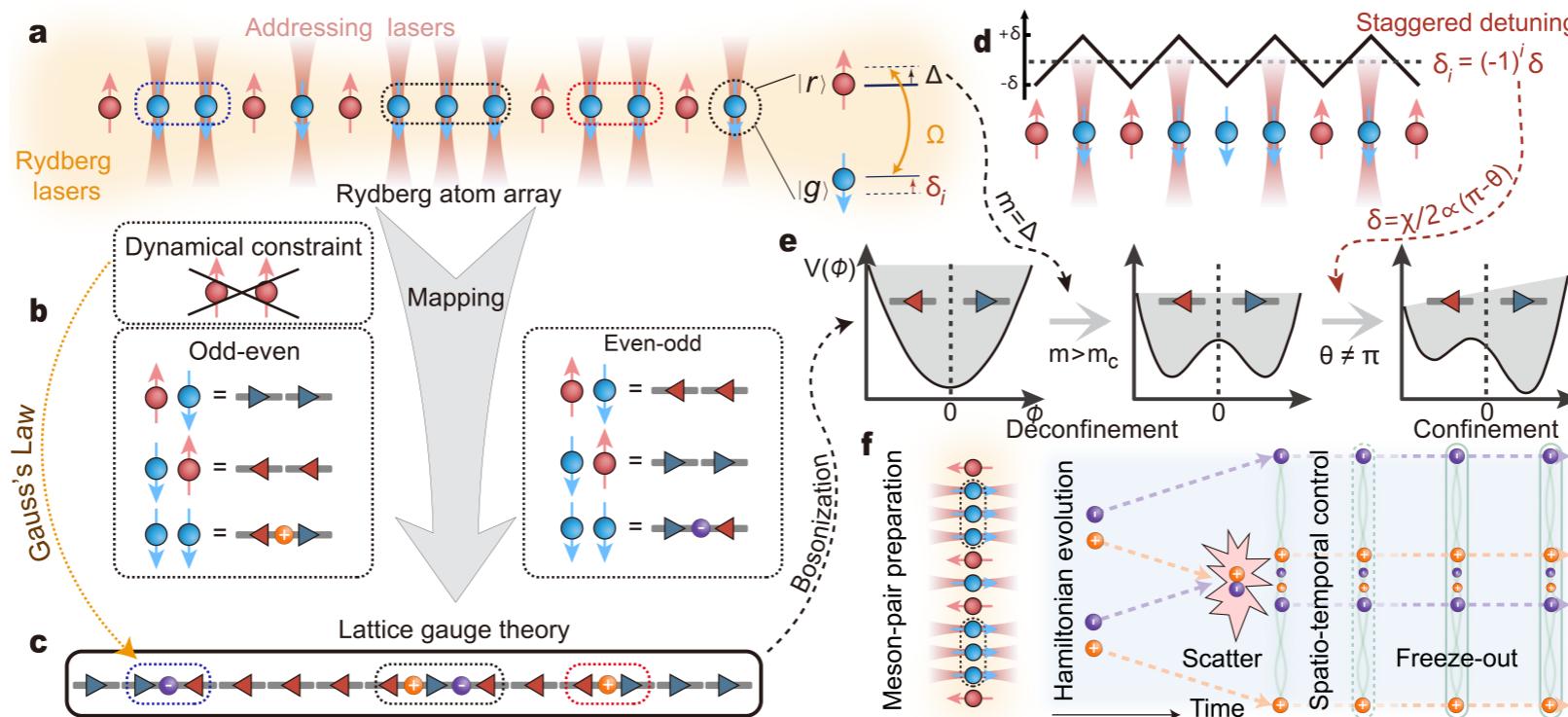
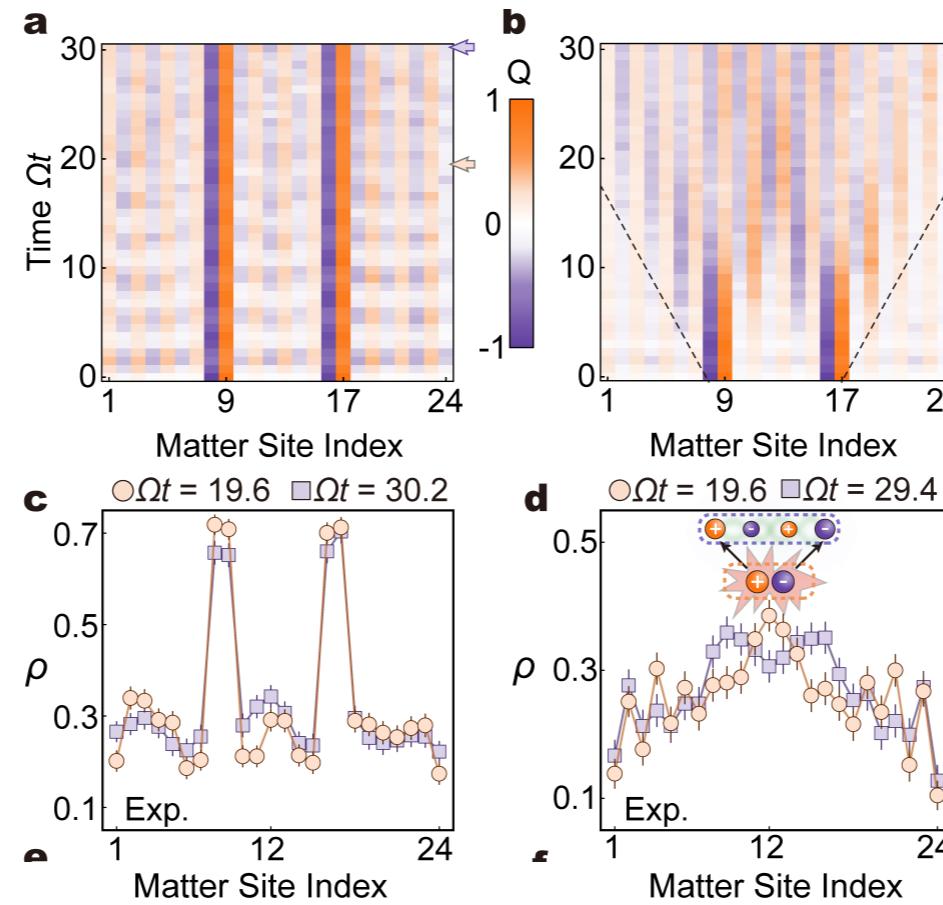
A cold-atom simulation proposal for scattering in a U(1) QLM in (1+1)D



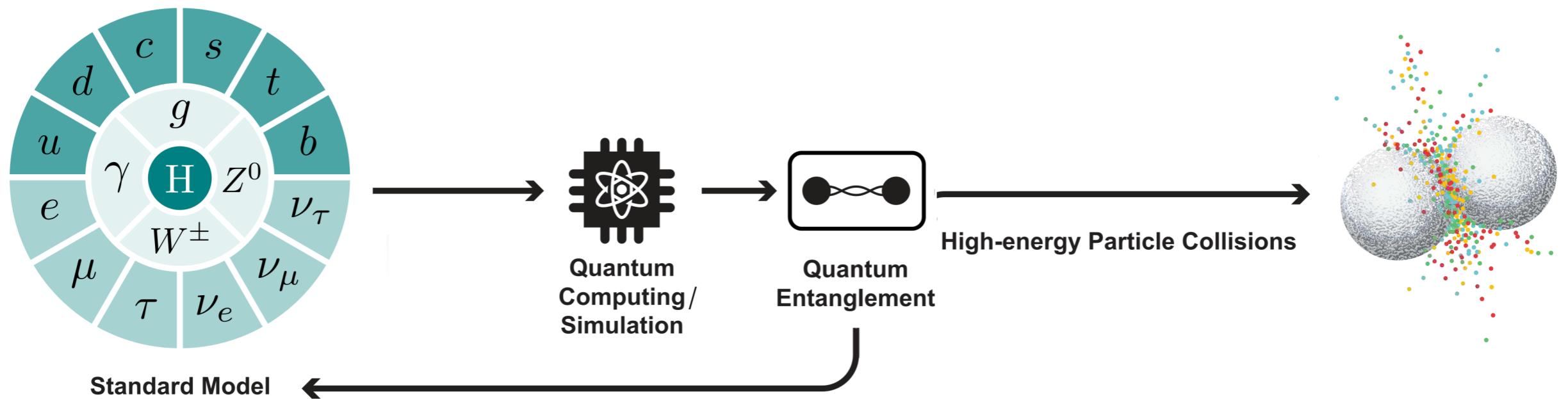
A circuit-QED simulation proposal for scattering in the Schwinger model



A Rydberg-atom quantum simulation of scattering in the (1+1)D U(1) QLM



FIRST-PRINCIPLES PREDICTIONS FOR SCATTERING PROCESSES: QUANTUM SIMULATIONS? YES! GAME IS ON BUT LONG WAY TO GO!



Bauer, ZD, Klco, and Savage, *Nature Rev. Phys.* 5 (2023) 7, 420–432.

Check out our recent review:
Halimeh, Mueller, Knolle, Papić, ZD, "Quantum simulation of out-of-equilibrium dynamics in gauge theories", arXiv:2509.03586 [quant-ph].

THANK YOU

