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Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information
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AN OVERARCHING GOAL OF NUCLEAR AND HIGH-ENERGY PHYSICS:

FIRST-PRINCIPLES PREDICTIONS FOR SCATTERING PROCESSES



We care about scattering and reaction processes since they can:


i) teach us about the internal structure of matter,


ii) constrain astrophysical models of stellar evolution and 

of terrestrial energy-production mechanisms,


iii) illuminate phases of matter and reveal how matter 

evolves under extreme conditions such as post Big Bang,


iv) lead to discovery of new symmetries, particles,

 and interactions in nature.

A barrier to making first-principles predictions is the quantum, relativistic, and nonperturbative 
nature of quantum chromodynamics, the quantum field theory of quarks and gluons!

Credit: Argonne National Lab


⌫e

e+

Credit: W. Detmold (MIT)

Credit: https://astronuclphysics.info

Credit: CMS, CERN
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FIRST-PRINCIPLES PREDICTIONS FOR SCATTERING PROCESSES:

CLASSICAL SIMULATIONS?



Can we classically simulate scattering of composite particles from the Standard Model?
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Lattice gauge theory methods based on Monte-Carlo sampling in Euclidean (imaginary) time have 
enabled this…but only at low energies so far…
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in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
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recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
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supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
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large quark masses. Clearly, it is the value of g
NN
⌫ (µ)

with the physical quark masses that is of phenomenolog-
ical interest and, a priori, the quark-mass dependence of
such an LEC is unknown. Therefore, an attempt to con-
strain g

NN
⌫ (µ) or the renormalization-scale–independent

quantity
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⌫ (µ) (50)

at the quark masses of this work will likely have little
bearing on the physical value of the coupling.

Nonetheless, one may still obtain an estimate of the
value of this LEC at the quark-mass value of this work,
in which case the corresponding values of two-nucleon
scattering parameters need to be used in the matching
relation. To date, there are two classes of LQCD compu-
tations of low-energy two-nucleon spectra and scattering
parameters at m⇡ ⇡ 800 MeV via the use of Lüscher’s
finite-volume formalism. The earlier computations in-
volve asymmetric two-nucleon correlation functions, and
point to the existence of rather deep bound states in
both the spin-singlet and spin-triplet two-nucleon chan-
nels [44, 50, 52, 55, 67, 68]. These were subsequently
used to constrain the relevant LECs in electromagnetic
and weak reactions of two-nucleon systems at various
pion masses and allowed preliminary extrapolations to
the physical point [20, 21, 45, 69, 70]. However, at
the finite-volume ground-state two-nucleon energy, which
sets the kinematics of the amplitude in this work, the pi-
onless EFT converges poorly when using the values for
the e↵ective range and scattering length in those stud-
ies. Therefore, obtaining the desired 0⌫��-decay ampli-
tude using those results requires extensions of the current
leading-order matching formalism, or the use of alternate
power-counting schemes. The other set of calculations at
m⇡ ⇡ 800 MeV build symmetric correlation functions to
enable accessing the low-lying spectra via a variational
method. These lead to upper bounds on ground-state en-
ergies that are also consistent with less bound or unbound
two-nucleon systems within uncertainties [54, 62, 71]. No
bound states are seen in complementary studies using the
Bethe-Salpeter potential method [72, 73]. While the as-
sociated scattering length and e↵ective range for these
bounds allow the use of the leading-order matching for-
malism here, it is non-trivial to turn variational bounds
on the energies to bounds on the desired LEC of the EFT,
given the nonlinearity of the matching relation.

Despite these caveats, the matching to the EFT am-
plitude using the above calculation of Ann!pp, leads to
g̃

NN
⌫ (µ = m⇡ = 806 MeV) values that di↵er by a factor of

four depending on whether the non-variational determi-
nations of two-nucleon energy and scattering parameters
or those from the variational studies are used (assuming
the variational bounds are saturated). In both cases, the
extracted values are within an order of magnitude of the
phenomenological estimate of Ref. [64]. Consequently, in-
creasingly controlled determinations of the two-nucleon
quantities that are input to the matching relation are

needed for a robust determination of this LEC. For cal-
culations with physical quark masses, such two-nucleon
quantities are well determined phenomenologically, which
would ease the matching procedure.

Improving on this situation thus requires calculations
of Ann!pp and the finite-volume two-nucleon spectrum
at or near the physical quark masses. A point worth
emphasizing is that the pionless EFT converges at the
finite-volume ground-state energy of the spin-singlet two-
nucleon system, provided that the lattice volume is suf-
ficiently large, hence putting another requirement on fu-
ture calculations. For an exploration of the impact of
volume on the determination of g

NN
⌫ (µ) at the physical

values of quark masses, see Ref. [37].

V. SUMMARY AND CONCLUSION

Within the coming few decades, the sensitivity of exper-
imental neutrinoless double-beta decay searches is pro-
jected to increase by several orders of magnitude, corre-
sponding to an order of magnitude decrease in the e↵ec-
tive 0⌫�� masses that can be probed [16]. Given current
best estimates of nuclear matrix elements, these exper-
iments will likely—but not definitively—be sensitive to
the entirety of the parameter space for the inverted hi-
erarchy of neutrino masses. These searches thus have a
large discovery potential but also present the possibility
of definitively ruling out the Majorana nature of the neu-
trino if they find no such decays and if neutrino oscillation
experiments confirm the inverted mass hierarchy. Thus,
either positive or negative results in next-generation ex-
periments will shed crucial light on this problem provided
that the dominant mode of decay is via the exchange of
a light Majorana neutrino and that the corresponding
nuclear matrix elements can be computed accurately to
extract m�� from measured (bounds on) half-lives.

Starting with the low-energy constants from nuclear
e↵ective field theories, nuclear many-body theories can
provide ab initio calculations of binding energies and
0⌫�� matrix elements in light to moderate (A . 48)
nuclei [74, 75]. For heavier nuclei (16 . A . 132),
EFT-based approximations to nuclear physics can pre-
dict 0⌫�� half-lives with more control than the nuclear
models currently used [76–78]. As such, determining
these low-energy constants in the timescales relevant for
these next-generation experiments is of substantial im-
portance to the nuclear- and particle-physics communi-
ties [16, 17].

This work presents the first LQCD calculation of the
long-distance 0⌫��-decay amplitude of a nuclear system,
yielding the result

a
2Ann!pp = 0.078(16) (51)

on a single LQCD ensemble with a lattice spacing of a =
0.145 fm, a lattice volume of (L/a)3⇥T/a = 323⇥48, and
quark masses corresponding to a pion mass of m⇡ = 806
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Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
calculational strategies at high energies tend to break down at the lower energies relevant to fragmentation and the subsequent
cascades of hadrons. In astrophysical environments, neutrinos play a significant role in transporting energy during core-collapse
supernovae. Background matter and neutrino densities influence the evolution of flavor as the neutrinos radiate from the core.
Given the resulting mixed-state entanglement structure of the neutrino fields, accurate simulations of these coherent processes is
challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
Underground Neutrino Experiment (DUNE) experiment, and for the violation of lepton number in 0⌫��-decay experiments
in nuclei. Simulations of nuclear-physics ingredients for these experimental programs present a significant challenge for
classical computation. Last, but not least, theories involving inflationary epoch of the universe, dark-matter models involving
composite ‘dark hadrons’, CP-violating scenarios occurring out of equilibrium in the early universe, or strongly-interacting
QFTs living on the boundary of a bulk containing quantum-gravity models, all require simulations of various quantum fields in-
and out-of-equilibrium, which are often intractable.

Amidst such challenges arose a key perspective: Information is physical, computation is the science of information

2/23

What about high energies, like events at the Large Hadron Collider or the Relativistic 
Heavy-Ion Collider?

Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.
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required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
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There are mainly two issues…


i) making complicated states, i.e., high-energy protons, or heavy ions, etc.,

 ii) imaginary time nature of the classical Monte-Carlo calculations…no access to states as a 
function of Minkowski time elapsed after the collision!



THREE FEATURES MAKE LATTICE-QCD CALCULATIONS OF NUCLEI HARD:

i) The complexity of systems grows factorially with 
the number of quarks.

iii) Excitation gaps of nuclei are much smaller 
than the QCD scale.

ii) There is a severe signal-to-noise degradation.

Detmold and Orginos (2013)
Detmold and Savage (2010)
Doi and Endres (2013)

Paris (1984) and Lepage (1989)
Wagman and Savage (2017, 2018)

Beane at al (NPLQCD) (2009)
Beane, Detmold, Orginos, Savage (2011)
ZD (2018)
Briceno, Dudek and Young (2018)



No access to real-time nonequilibrium dynamics of matter in heavy-ion collisions or after the 
Big Bang…

…and to a wealth of dynamical response functions, transport properties, parton distribution 
functions, etc.

eiS[U,qq̄]

Path integral formulation:

U(t) = e�iHt

Hamiltonian evolution:

SIGN PROBLEM MAKES CONVENTIONAL LATTICE-GAUGE-THEORY 
METHODS INTRACTABLE.
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required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
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predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
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challenging. Experimental programs probing the fundamental nature of neutrinos include searches for CP-violation in the Deep
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Figure from: ZD, Hseih, and Kadam, arXiv:2402.00840 [quant-ph].

STUDY HIGH-ENERGY SCATTERING VIA QUANTUM SIMULATION?

THE JORDAN-LEE-PRESKILL STRATEGY 3

FIG. 1. A schematic portrayal of JLP’s protocol, a quantum algorithm for simulating scattering processes
in the S-matrix formalism. The protocol consists of state preparation, time evolution under Hamiltonian
H, and measurement. In the JLP protocol, adiabatic evolution is required to transform the incoming wave
packets of the free theory, | i

in
free, into those of an interacting theory, | i

in
int. Similarly, outgoing wave packets

of the interacting theory, | i
out
int , are adiabatically turned into those of the free theory, | i

out
free, before any

measurement of the final state is performed. Alternatively, the state of the system can be measured at any
post-collision stage in a quantum simulation.

Refs. [18, 19], but they have been limited to low-energy and low inelasticity processes [20–22].
High-energy scattering of hadrons and nuclei are substantially more complex due to the composite
nature of the colliding particles and a plethora of asymptotic final-state particles that are often
produced. Beyond asymptotic scattering amplitudes, the evolution of matter as a function of time
elapsed after the collision holds the key to yet-not-fully understood mechanisms of fragmentation,
hadronization, and thermalization in particle colliders and in early universe [23–28]. Unfortu-
nately, perturbative and non-perturbative tools, with the aid of classical computing, have had
limited success in providing a full first-principles description of scattering processes to date.

Alternatively, one can resort to Hamiltonian simulation, whose real-time nature is deemed
favorable for simulating scattering processes from first principles. On classical computers, Tensor-
Network methods have proven e�cient in simulating gauge theories in the Hamiltonian formal-
ism [29–31], including for scattering processes in simple models [32–36]. However, the exponential
growth of the Hilbert space as a function of system size, and the accumulation of unbounded en-
tanglement in high-energy processes, are likely to make classical Hamiltonian simulation of gauge
theories of the Standard Model infeasible. This motivates exploring the potential of simulating
these theories on quantum hardware [37–42]. After mapping degrees of freedom of the system of
interest to those of quantum platforms, time evolution can proceed in a digital or analog mode
or a hybrid of both. The digital mode, which is the focus of this work, builds the unitary repre-
senting the Hamiltonian evolution out of a universal set of gates. The analog mode engineers a
simulator Hamiltonian to mimic the target Hamiltonian, which is then evolved continuously. A
hybrid mode combines features of both for more flexibility and e�ciency. Digital [43–69], ana-
log [70–90], and hybrid [91–95] schemes have been developed and implemented in recent years for
increasingly more complex gauge theories. Most implementations, nonetheless, concern dynamics
after a quantum quench [96]. A quench process involves preparing the simulation in a simple
initial state and abruptly changing the Hamiltonian to the Hamiltonian of interest in order to
create non-equilibrium conditions. In order to simulate scattering processes, however, one needs
to initialize the quantum simulation in more complex states, such as particle wave packets.

Jordan, Lee, and Preskill (JLP) pioneered studies of scattering in quantum field theories on a
quantum computer [97, 98]. Within an interacting scalar field theory, they laid down a systematic
procedure for state preparation, time evolution, and measurement of wave packets. In particular,

Jordan, Lee, Preskill, Science 336, 1130-1133 (2012).
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EXAMPLES OF (GROUND-)STATE PREPARATION METHODS

Adiabatic state preparation: Prepare the ground state of a simple 
Hamiltonian, then adiabatically turn the Hamiltonian to that of the 
target Hamiltonian. Requires a non-closing energy gap.


Imaginary time evolution: Start with an easily prepared state and 
evolve with imaginary time operator to settle in the ground state. 
Require implementing non-unitary operator which can be costly.


Variational quantum eigensolver (VQE): Use the variational 
principle of quantum mechanic and classical processing to 
minimize the energy of a non-trivial ansatz wavefunction generated 
by a quantum circuit. The optimized circuit corresponding to the 
minimum energy generates an approximation to ground-state 
wavefunction. Can fail if stuck in local minima manifolds or 
manifolds with exponentially small gradients in qubit number.


Classically computed states: Use classical computing such as 
Monte Carlo, Tensor Networks, Neural Networks to learn the state 
or features of the state when possible, for a direct implementation 
of the state as a quantum circuit, or as close enough state to the 
ground state as a starting point of the above algorithms so as to 
achieve more efficient implementations.
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EXAMPLES OF (GROUND-)STATE PREPARATION METHODS

Adiabatic state preparation: Prepare the ground state of a simple 
Hamiltonian, then adiabatically turn the Hamiltonian to that of the 
target Hamiltonian. Requires a non-closing energy gap.


Imaginary time evolution: Start with an easily prepared state and 
evolve with imaginary time operator to settle in the ground state. 
Requires implementing a non-unitary operator which can be costly.


Variational quantum eigensolver (VQE): Use the variational 
principle of quantum mechanics and classical processing to 
minimize the energy of a non-trivial ansatz wavefunction generated 
by a quantum circuit. The optimized circuit corresponding to the 
minimum energy generates an approximation to ground-state 
wavefunction. Can fail if stuck in local minima manifolds or 
manifolds with exponentially small gradients in qubit number.


Classically computed states: Use classical computing such as 
Monte Carlo, Tensor Networks, Neural Networks to learn the state 
or features of the state when possible, for a direct implementation 
of the state as a quantum circuit, or as close enough state to the 
ground state as a starting point of the above algorithms so as to 
achieve more efficient implementations.
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EXAMPLES OF (GROUND-)STATE PREPARATION METHODS

Adiabatic state preparation: Prepare the ground state of a simple 
Hamiltonian, then adiabatically turn the Hamiltonian to that of the 
target Hamiltonian. Requires a non-closing energy gap.


Imaginary time evolution: Start with an easily prepared state and 
evolve with imaginary time operator to settle in the ground state. 
Requires implementing a non-unitary operator which can be costly.


Variational quantum eigensolver (VQE): Use the variational 
principle of quantum mechanics and classical processing to 
minimize the energy of a non-trivial ansatz wavefunction generated 
by a quantum circuit. The optimized circuit corresponding to the 
minimum energy generates an approximation to ground-state 
wavefunction. Can fail if stuck in local minima manifolds or 
manifolds with exponentially small gradients in qubit number.


Classically computed states: Use classical computing such as 
Monte Carlo, Tensor Networks, Neural Networks to learn the state 
or features of the state when possible, for a direct implementation 
of the state as a quantum circuit, or as close enough state to the 
ground state as a starting point of the above algorithms so as to 
achieve more efficient implementations.
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DIFFERENT APPROACHES TO QUANTUM SIMULATION
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DIFFERENT APPROACHES TO QUANTUM SIMULATION

Degrees of freedom in the 
simulator: fermions, bosons, 
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DIFFERENT APPROACHES TO QUANTUM SIMULATION

The engineered simulator 
Hamiltonian that mimics the 
Hamiltonian of target system.

Some of the leading analog simulators are: cold-atoms in optical lattices, 
Rydberg atoms with optical tweezers, trapped ions, superconducting 
circuits (including when coupled to photonics systems), etc. Atoms in optical lattices

Theory:  Jaksch et al. PRL (1998)

Experiment:  Kasevich et al., Science (2001);
Greiner et al., Nature (2001);
Phillips et al., J. Physics B (2002)       
Esslinger et al., PRL (2004);
and many more …

Eugene Demler lectures, 
Harvard University.CREDIT: ANDREW SHAW, UNIVERSITY OF MARYLAND
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DIFFERENT APPROACHES TO QUANTUM SIMULATION

Only qubits as DOF. Only 
universal single- and two-
qubit operations allowed.



Digital

DIFFERENT APPROACHES TO QUANTUM SIMULATION

t = NT � t

..
.

e�i(H1+H2+··· )t =
⇥
e�iH1�te�iH2�t · · ·

⇤t/�t
+O((�t)2)

Trotter-Suzuki expansion:

Other digitalization schemes also exist.

:

e�iH1�t

e�iH2�t

..
.

H = H1 +H2 + · · ·

Andrew Childs lectures on Quantum 
Simulation, University of Maryland.

Each of these can now potentially 
be decomposed to a universal 
set of single and two-qubit gates.

Example of a digital scheme:

…other methods exist too.
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t = NT � t
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DIFFERENT APPROACHES TO QUANTUM SIMULATION

Analog-Digital
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e�itH

<latexit sha1_base64="SCNoj6u0uc3QfY6dgY81myivwwg=">AAAB+XicbVBNSwMxEM36WevXqkcvwSJ4seyKqMeilx4r2A9o15JNZ9vQbDYk2WJZ+k+8eFDEq//Em//GtN2Dtj4YeLw3w8y8UHKmjed9Oyura+sbm4Wt4vbO7t6+e3DY0EmqKNRpwhPVCokGzgTUDTMcWlIBiUMOzXB4N/WbI1CaJeLBjCUEMekLFjFKjJW6rtshUqrkCcNjds5MddJ1S17ZmwEvEz8nJZSj1nW/Or2EpjEIQznRuu170gQZUYZRDpNiJ9UgCR2SPrQtFSQGHWSzyyf41Co9HCXKljB4pv6eyEis9TgObWdMzEAvelPxP6+dmugmyJiQqQFB54uilGOT4GkMuMcUUMPHlhCqmL0V0wFRhBobVtGG4C++vEwaF2X/quzfX5Yqt3kcBXSMTtAZ8tE1qqAqqqE6omiEntErenMy58V5dz7mrStOPnOE/sD5/AFQppN0</latexit>

⇡ e�itH



Measure 
observables



Energy and momentum, particle and charge (both locally 
and globally)


Various correlation functions (both static and dynamical)


Asymptotic S-matrix elements (assuming asymptotic final 
states are reached):


• Exclusive processes: can be obtained from overlaps

• Inclusive processes: can be obtained from two-current 

correltor via optical theorem

• Semi-inclusive processes: can be obtained using 

projectors


Entanglement measures such as estimates of entanglement 
spectrum (which can signal thermalization or lack of).

EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these 
can be measured directly in the computational basis, but others need a change of basis or other 
dedicated quantum circuits to access them.

Fidelities and full state tomography are hard (they demand exponentially large number of measurements).



Energy and momentum, particle and charge (both locally 
and globally)


Various correlation functions (both static and dynamical)


Asymptotic S-matrix elements (assuming asymptotic final 
states are reached):


• Exclusive processes: can be obtained from overlaps

• Inclusive processes: can be obtained from two-current 

correltor via optical theorem

• Semi-inclusive processes: can be obtained using 

projectors


Entanglement measures such as estimates of entanglement 
spectrum (which can signal thermalization or lack of).

EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these 
can be measured directly in the computational basis, but others need a change of basis or other 
dedicated quantum circuits to access them.

Fidelities and full state tomography are hard (they demand exponentially large number of measurements).
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<latexit sha1_base64="FxWMGo9LSS75uB9KiAndsQBx4BE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRizcr2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4a4ne+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5F1bs/r9Su8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QMrpo26</latexit>

On

<latexit sha1_base64="HTZC3w8RSy354AedthLtKSRirt4=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvoqeyKqMeiF29WsB/QLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5Bqw8GHu/NMDMvTAQ31vO+UGFpeWV1rbhe2tjc2t4p7+41jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR9dRvPTJtuJL3dpywICYDySNOiXVS87aXyeNJr1zxqt4M+C/xc1KBHPVe+bPbVzSNmbRUEGM6vpfYICPacirYpNRNDUsIHZEB6zgqScxMkM2uneAjp/RxpLQrafFM/TmRkdiYcRy6zpjYoVn0puJ/Xie10WWQcZmklkk6XxSlAluFp6/jPteMWjF2hFDN3a2YDokm1LqASi4Ef/Hlv6R5WvXPq/7dWaV2lcdRhAM4hBPw4QJqcAN1aACFB3iCF3hFCj2jN/Q+by2gfGYffgF9fANR/I73</latexit>

On�
<latexit sha1_base64="igg5aDg2yumfRbEw5WYtuRs2G6E=">AAAB73icbVDLSgNBEJyNrxhfUY9eBoPgxbAroh6DXnKMYB6QrGF20kmGzM6uM71CWPITXjwo4tXf8ebfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEc6jzSEa6FTADUiioo0AJrVgDCwMJzWB0O/WbT6CNiNQ9jmPwQzZQoi84Qyu14CE9E1WcdIslt+zOQJeJl5ESyVDrFr86vYgnISjkkhnT9twY/ZRpFFzCpNBJDMSMj9gA2pYqFoLx09m9E3pilR7tR9qWQjpTf0+kLDRmHAa2M2Q4NIveVPzPayfYv/ZToeIEQfH5on4iKUZ0+jztCQ0c5dgSxrWwt1I+ZJpxtBEVbAje4svLpHFe9i7L3t1FqXKTxZEnR+SYnBKPXJEKqZIaqRNOJHkmr+TNeXRenHfnY96ac7KZQ/IHzucP3weP3Q==</latexit>

e�iHt
<latexit sha1_base64="CDQQSbDhDYGmS3aSdXEaFJ45/ek=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRS48V7Ae0sWy2k3bpZhN2N0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUxseM1820X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj93Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJb/yMyyQ1KNliUZgKYmIy+50MuEJmxMQSyhS3txI2oooyYxMq2RC85ZdXSeui6l1VvfvLSu02j6MIJ3AK5+DBNdSgDg1oAoMxPMMrvDmJ8+K8Ox+L1oKTzxzDHzifP3Pxj6Y=</latexit>

eiHt

<latexit sha1_base64="6fs7i6K56fAvYZ5y8MV8JeYlqmI=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIqMeiF48VTFtoQ9lsN+3SzSbsvggl9Dd48aCIV3+QN/+N2zYHbR1YGGbesO9NmEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3cxvP3FtRKIecZLyIKZDJSLBKFrJ7w0SNP1qza27c5BV4hWkBgWa/eqXzbEs5gqZpMZ0PTfFIKcaBZN8WullhqeUjemQdy1VNOYmyOfLTsmZVQYkSrR9Cslc/Z3IaWzMJA7tZExxZJa9mfif180wuglyodIMuWKLj6JMEkzI7HIyEJozlBNLKNPC7krYiGrK0PZTsSV4yyevktZF3buqew+XtcZtUUcZTuAUzsGDa2jAPTTBBwYCnuEV3hzlvDjvzsditOQUmWP4A+fzB/Ngjsg=</latexit> ..
.

!!"$/& QGR

|Ψ!⟩ |+⟩

Rij

Rij

Rij

Rij

Rij

Rij

Rij

Rij

Rij

Rij

Rij

Rij

Rij

Rij

Rij

0

0

( = 1

(a)

(b)

!" " !# !, #

$' !!)$* $+ !)$*

H

...

.

..

x,y

(c) Ramsey 
Interferometry

+ %&'(

<latexit sha1_base64="XDjPvrbuqrwx4ku1JqrAmoiYMU4=">AAAB9XicbVDLTgJBEOz1ifhCPXqZSEy8iLvEqEeiF46YyCOBhcwOvTBh9pGZWQ3Z8B9ePGiMV//Fm3/jAHtQsJJOKlXd6e7yYsGVtu1va2V1bX1jM7eV397Z3dsvHBw2VJRIhnUWiUi2PKpQ8BDrmmuBrVgiDTyBTW90N/WbjygVj8IHPY7RDegg5D5nVBupi930vOOhpqR6UZ70CkW7ZM9AlomTkSJkqPUKX51+xJIAQ80EVart2LF2Uyo1ZwIn+U6iMKZsRAfYNjSkASo3nV09IadG6RM/kqZCTWbq74mUBkqNA890BlQP1aI3Ff/z2on2b9yUh3GiMWTzRX4iiI7INALS5xKZFmNDKJPc3ErYkErKtAkqb0JwFl9eJo1yybkqOfeXxcptFkcOjuEEzsCBa6hAFWpQBwYSnuEV3qwn68V6tz7mrStWNnMEf2B9/gBDVJG1</latexit>

e��H/2
<latexit sha1_base64="BG0hmqEYPi4+wZRv+Q+p9girVSw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KomIeix68diK/YA2lM120q7dbMLuRiihv8CLB0W8+pO8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6nfqtJ1Sax/LBjBP0IzqQPOSMGivV73ulsltxZyDLxMtJGXLUeqWvbj9maYTSMEG17nhuYvyMKsOZwEmxm2pMKBvRAXYslTRC7WezQyfk1Cp9EsbKljRkpv6eyGik9TgKbGdEzVAvelPxP6+TmvDaz7hMUoOSzReFqSAmJtOvSZ8rZEaMLaFMcXsrYUOqKDM2m6INwVt8eZk0zyveZcWrX5SrN3kcBTiGEzgDD66gCndQgwYwQHiGV3hzHp0X5935mLeuOPnMEfyB8/kDrpmM3A==</latexit>

R
<latexit sha1_base64="Sp981QeS/29cfM+Oyn1EhwiHGeM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRgx5btB/QhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FjpvtG/7ZcrbtWdg/wlXk4qkKPeL3/2BjFLI5SGCap113MT42dUGc4ETku9VGNC2ZgOsWuppBFqP5ufOiUnVhmQMFa2pCFz9edERiOtJ1FgOyNqRnrZm4n/ed3UhFd+xmWSGpRssShMBTExmf1NBlwhM2JiCWWK21sJG1FFmbHplGwI3vLLf0nrrOpdVL3GeaV2ncdRhCM4hlPw4BJqcAd1aAKDITzBC7w6wnl23pz3RWvByWcO4Recj2/zh42V</latexit>

QG

<latexit sha1_base64="OX5IFzNvGR9Wyk+lZ/20/pugIUI=">AAAB+3icbVBNS8NAEN34WetXrEcvi0XwICURUY9FL56kgv2AJpTNdtIu3WzC7kYsMX/FiwdFvPpHvPlv3LY5aOuDgcd7M8zMCxLOlHacb2tpeWV1bb20Ud7c2t7ZtfcqLRWnkkKTxjyWnYAo4ExAUzPNoZNIIFHAoR2Mrid++wGkYrG41+ME/IgMBAsZJdpIPbvylHkBaHJym2NPEjHg0LOrTs2ZAi8StyBVVKDRs7+8fkzTCISmnCjVdZ1E+xmRmlEOedlLFSSEjsgAuoYKEoHys+ntOT4ySh+HsTQlNJ6qvycyEik1jgLTGRE9VPPeRPzP66Y6vPQzJpJUg6CzRWHKsY7xJAjcZxKo5mNDCJXM3IrpkEhCtYmrbEJw519eJK3Tmntec+/OqvWrIo4SOkCH6Bi56ALV0Q1qoCai6BE9o1f0ZuXWi/Vufcxal6xiZh/9gfX5A75WlEA=</latexit>

|�, N�
<latexit sha1_base64="AVB8SPCCq+yEcXwZ8TsKckJsW5k=">AAACBnicbVDLSgNBEJz1GeNr1aMIg0HwIGFXRD0GvXiSCOYB2RhmJ51kyMzsMjMrhHVPXvwVLx4U8eo3ePNvnDwOmljQUFR1090Vxpxp43nfztz8wuLScm4lv7q2vrHpbm1XdZQoChUa8UjVQ6KBMwkVwwyHeqyAiJBDLexfDv3aPSjNInlrBjE0BelK1mGUGCu13L2HNAjBkKPrDAeKyC6HuzRQAse9gc5absEreiPgWeJPSAFNUG65X0E7ookAaSgnWjd8LzbNlCjDKIcsHyQaYkL7pAsNSyURoJvp6I0MH1iljTuRsiUNHqm/J1IitB6I0HYKYnp62huK/3mNxHTOmymTcWJA0vGiTsKxifAwE9xmCqjhA0sIVczeimmPKEKNTS5vQ/CnX54l1eOif1r0b04KpYtJHDm0i/bRIfLRGSqhK1RGFUTRI3pGr+jNeXJenHfnY9w650xmdtAfOJ8/eieZIw==</latexit>

|�, N�phys
<latexit sha1_base64="ITmasplSQ4mvvkmHOuIwPkTqgYQ=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBbBVUlE1GXRjcsq9gFNDJPppB06MwkzEyHEght/xY0LRdz6E+78G6dtFtp64MLhnHu5954wYVRpx/m2SguLS8sr5dXK2vrG5pa9vdNScSoxaeKYxbITIkUYFaSpqWakk0iCeMhIOxxejv32PZGKxuJWZwnxOeoLGlGMtJECe+/BSxQNbqAnkegzcpd7ksNkkKlRYFedmjMBnCduQaqgQCOwv7xejFNOhMYMKdV1nUT7OZKaYkZGFS9VJEF4iPqka6hAnCg/n/wwgodG6cEolqaEhhP190SOuFIZD00nR3qgZr2x+J/XTXV07udUJKkmAk8XRSmDOobjQGCPSoI1ywxBWFJzK8QDJBHWJraKCcGdfXmetI5r7mnNvT6p1i+KOMpgHxyAI+CCM1AHV6ABmgCDR/AMXsGb9WS9WO/Wx7S1ZBUzu+APrM8fTsWX9A==</latexit>

| R�phys

<latexit sha1_base64="Mx9U9HLIj0zLPCaOruCKWAWBAQo=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKthbSUDbbSbt0swm7G6HE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYnqhFSj4BJbhhuBnVQhjUOBD+HoZuo/PKLSPJH3ZpxiENOB5BFn1FjJfyIu6SoqBwJ71Zpbd2cgy8QrSA0KNHvVr24/YVmM0jBBtfY9NzVBTpXhTOCk0s00ppSN6AB9SyWNUQf57OQJObFKn0SJsiUNmam/J3Iaaz2OQ9sZUzPUi95U/M/zMxNdBTmXaWZQsvmiKBPEJGT6P+lzhcyIsSWUKW5vJWxIFWXGplSxIXiLLy+T9lndu6h7d+e1xnURRxmO4BhOwYNLaMAtNKEFDBJ4hld4c4zz4rw7H/PWklPMHMIfOJ8/ZUKQrw==</latexit>

|0�

<latexit sha1_base64="Mx9U9HLIj0zLPCaOruCKWAWBAQo=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKthbSUDbbSbt0swm7G6HE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTAXXxnW/ndLK6tr6RnmzsrW9s7tX3T9o6yRTDFssEYnqhFSj4BJbhhuBnVQhjUOBD+HoZuo/PKLSPJH3ZpxiENOB5BFn1FjJfyIu6SoqBwJ71Zpbd2cgy8QrSA0KNHvVr24/YVmM0jBBtfY9NzVBTpXhTOCk0s00ppSN6AB9SyWNUQf57OQJObFKn0SJsiUNmam/J3Iaaz2OQ9sZUzPUi95U/M/zMxNdBTmXaWZQsvmiKBPEJGT6P+lzhcyIsSWUKW5vJWxIFWXGplSxIXiLLy+T9lndu6h7d+e1xnURRxmO4BhOwYNLaMAtNKEFDBJ4hld4c4zz4rw7H/PWklPMHMIfOJ8/ZUKQrw==</latexit>

|0�
<latexit sha1_base64="srIlW3qcCxQMWB2kpodsDSx3TPQ=">AAACA3icbVBNS8NAEN3Ur1q/ot70EiyCp5KIqMeiF71VsR/QhrLZTtqlu5uwuxFCqHjxr3jxoIhX/4Q3/43bNgdtfTDweG+GmXlBzKjSrvttFRYWl5ZXiqultfWNzS17e6ehokQSqJOIRbIVYAWMCqhrqhm0YgmYBwyawfBy7DfvQSoaiTudxuBz3Bc0pARrI3XtvY7k2S3mCtKHa6FBhiAjDlqmo65ddivuBM488XJSRjlqXfur04tIwkFowrBSbc+NtZ9hqSlhMCp1EgUxJkPch7ahAnNQfjb5YeQcGqXnhJE0JbQzUX9PZOZGlfLAdHKsB2rWG4v/ee1Eh+d+RkWcaBBkuihMmKMjZxyI06MSiGapIZhIam51yABLTEwYqmRC8GZfnieN44p3WvFuTsrVizyOItpHB+gIeegMVdEVqqE6IugRPaNX9GY9WS/Wu/UxbS1Y+cwu+gPr8wd9lJi2</latexit>

Ramsey Interferometry

<latexit sha1_base64="6fs7i6K56fAvYZ5y8MV8JeYlqmI=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5KIqMeiF48VTFtoQ9lsN+3SzSbsvggl9Dd48aCIV3+QN/+N2zYHbR1YGGbesO9NmEph0HW/ndLa+sbmVnm7srO7t39QPTxqmSTTjPsskYnuhNRwKRT3UaDknVRzGoeSt8Px3cxvP3FtRKIecZLyIKZDJSLBKFrJ7w0SNP1qza27c5BV4hWkBgWa/eqXzbEs5gqZpMZ0PTfFIKcaBZN8WullhqeUjemQdy1VNOYmyOfLTsmZVQYkSrR9Cslc/Z3IaWzMJA7tZExxZJa9mfif180wuglyodIMuWKLj6JMEkzI7HIyEJozlBNLKNPC7krYiGrK0PZTsSV4yyevktZF3buqew+XtcZtUUcZTuAUzsGDa2jAPTTBBwYCnuEV3hzlvDjvzsditOQUmWP4A+fzB/Ngjsg=</latexit> ..
.
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<latexit sha1_base64="Wfxuxkk21MAX1q5CutKFRk4/4N8=">AAACFnicbVDLSgNBEJz1bXxFPXoZDGICGnZF1KPoxZOJYKKQDcvspBOHzM4uM71CWPIVXvwVLx4U8Sre/Bsnj4MaCxqKqm66u8JECoOu++VMTc/Mzs0vLOaWlldW1/LrG3UTp5pDjccy1rchMyCFghoKlHCbaGBRKOEm7J4P/Jt70EbE6hp7CTQj1lGiLThDKwX5fV8y1ZFAK4EqYqkSZGq3X3RL1NdDPcj8EJDt+VG6d9kP8gW37A5BJ4k3JgUyRjXIf/qtmKcRKOSSGdPw3ASbGdMouIR+zk8NJIx3WQcalioWgWlmw7f6dMcqLdqOtS2FdKj+nMhYZEwvCm1nxPDO/PUG4n9eI8X2STMTKkkRFB8taqeSYkwHGdGW0MBR9ixhXAt7K+V3TDOONsmcDcH7+/IkqR+UvaOyd3VYOD0bx7FAtsg2KRKPHJNTckGqpEY4eSBP5IW8Oo/Os/PmvI9ap5zxzCb5BefjGzAqnic=</latexit>
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FIG. 1. Schematic overview of the PTPQ-state preparation.
The colored squares in the R circuit denote randomly-chosen
single-qubit rotations around X and Y axes of the Bloch
sphere by angle ⇡

2
and the T gates. The entangling gates

are controlled-Z rotations. The two consecutive single-qubit
gates on each qubit are constrained to be di↵erent in this con-
struction. Entangling gates in each layer only act on adjacent
qubits and this pattern continues, see Ref. [119] for details.
H is a Hadamard gate.

be introduced by penalizing non-physical components of
the random pure state as they evolve in imaginary time.

By accurately obtaining, via a numerical simulation,
the phase diagram of a simple gauge theory (Z2 LGT in
1 + 1 D with matter) at finite temperature and chemical
potential, we demonstrate the utility of TPQ-state ap-
proach in studying thermodynamics of gauge theories for
the first time. Aiming at quantum-computing applica-
tions, associated quantum algorithms, quantum-resource
requirements, and robustness to algorithmic and hard-
ware errors are further studied. The results indicate that
the TPQ-state approach may be a suitable candidate for
e�cient phase-diagram studies of QCD in the future.

Thermal Pure Quantum States for Gauge Theories.
Canonical TPQ states are defined as [120]

��,N� ≡ e−
�
2 H
� R� , (1)

with � being the inverse temperature, N the number of
degrees of freedom of the (discrete) system, and � R� a
Haar-random state. TPQ states approximate thermal
expectation values of ‘mechanical’ operators, i.e., those
that are low-degree polynomials of local operators, via

�O�� ≈
� ��,N �O��,N� �r

� ��,N ��,N� �r

, (2)

with exponential convergence in the system size (as
well as in inverse temperature), see Supplemental Ma-
terial [125] for details. While a single TPQ state su�ces
as N →∞, for faster convergence at finite N , a stochastic
average over r TPQ states can be preformed, denoted by
�⋅�r in the formula.

In gauge theories, ��R� may be unphysical, in which
case Eq. (1) will not reproduce physical thermal observ-
ables. While this issue can be avoided by eliminating
the gauge-field degrees of freedom with certain boundary
conditions in 1+1 D, such a strategy is not generally ap-
plicable. Therefore, we propose ‘physical’ thermal pure
quantum (PTPQ) states

��,N�phys
≡ e−

�
2 H̃
� R� , (3)

by adding a term to the Hamiltonian, H̃ ≡H +∑n f(Gn)

where Gn are Gauss’s law operators at site n, that is
[H,Gn] = 0. The function f is chosen such that un-
physical components of the state as it evolves in imag-
inary time are penalized in energy. Such an approach
is customary in the context of enforcing Gauss’s law in
analog and digital quantum simulation of gauge theo-
ries, and can be applied to both Abelian and non-Abelian
cases [46, 84, 126–131].

A circuit to prepare PTPQ states on quantum com-
puters is illustrated in Fig. 1. First, a random circuit R,
consisting of layers of single-qubit gates and entangling
two-qubit gates, is used to prepare an approximate Haar-
random state. Various designs are suggested for such
task with studied performance [132], and we adopt the
e�cient implementation of Ref. [119]. This random cir-
cuit is followed by a non-unitary operator e−�H�2 acting
upon the resulting random state to produce a standard
canonical TPQ state. Gauss’s law is enforced through

action with QG ≡ e−
�
2 ∑n f(Gn), the circuit implementa-

tion of which depends on the f chosen, see below for the
example of Z2 LGT in 1+1 D. These elements will be
further studied in the following.

Thermal chiral phase diagram of Z1+1
2 . The model that

will be studied in the following to demonstrate the value
of the TPQ-state approach in gauge theories is Z2 LGT
in 1+1 D coupled to staggered fermions (Z1+1

2 ). This
model is su�ciently simple to allow numerical verifica-
tions on classical computers, while it still exhibits a non-
trivial phase diagram which is aimed to be reproduced
by quantum simulation. The Hamiltonian of the model
is

H =
1

2a

N−2

�
n=0

(c†
n
�̃z

n
cn+1 + h.c.) +m

N−1

�
n=0

(−1)nc†
n
cn − ✏

N−2

�
n=0

�̃x

n
,

(4)
where c†

n
(cn) is fermionic creation (annihilation) op-

erator, and �̄z

n
and �̄x

n
are Pauli spin operators re-

alizing the Z2 link and electric field operators, re-
spectively. Open boundary conditions are considered
throughout, and generalization to other boundary con-
ditions is straightforward. N , a, m, and ✏ are fermionic

Image credit:
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EXAMPLES OF ACCESSIBLE OBSERVABLES

One can measure the following quantities to learn properties of the outcome state. Some of these 
can be measured directly in the computational basis, but others need a change of basis or other 
dedicated quantum circuits to access them.

Fidelities and full state tomography are hard (they demand exponentially large number of measurements).
…

… Prepare   |ϕ⟩

Prepare   |ψ⟩

H x/y

  ⟨ψ |ϕ⟩

Energy and momentum, particle and charge (both locally 
and globally)


Various correlation functions (both static and dynamical)


Asymptotic S-matrix elements (assuming asymptotic final 
states are reached):


• Exclusive processes: can be obtained from overlaps

• Inclusive processes: can be obtained from two-current 

correltor via optical theorem

• Semi-inclusive processes: can be obtained using 

projectors


Entanglement measures such as estimates of entanglement 
spectrum (which can signal thermalization or lack of).
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• Exclusive processes: can be obtained from overlaps
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projectors
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spectrum (which can signal thermalization or lack of).



PART 0:

MOTIVATION: FIRST-PRINCIPLES SIMULATIONS OF SCATTERING

PART I:

BASIC ELEMENTS OF QUANTUM SIMULATION OF SCATTERING

PART II:

TOWARD DIGITAL QUANTUM SIMULATIONS OF 

SCATTERING

PART III:

TOWARD ANALOG QUANTUM SIMULATIONS OF 

SCATTERING



FIRST STEPS TOWARD COLLISION/REACTION PROCESSES

Farrell, Chernyshev, Powell, 
Zemlevskiy, Illa, and Savage, 
Phys. Rev. D 107, 054513 (2023).

 decay in (1+1)D QCD 
(Quantinuum)
β

2 Trotter steps

10

FIG. 6. The probability of �-decay, �� ! �0 + e+ ⌫, with mu = 0.9, md = 2.1, me,⌫ = 0, g = 2 and G = 0.5, using one (left
panel) and two (right panel) Trotter steps (requiring 59 and 212 ZZ gates, respectively), as given in Table II. The dashed-black
curve shows the expected result found from the exact diagonalization of the Hamiltonian. The blue circles correspond to the
data obtained on the H1-1 machine, and the orange (green) triangles to the H1-1E emulator, each obtained from 200 shots (400
shots). The points have been shifted slightly along the t-axis for clarity. Error mitigation beyond physical-state post-selection
has not been performed. The weak Hamiltonian in the time-evolution responsible for the decay is given in Eq. (14).

Single-Baryon Decay Probabilities using Quantinuum’s H1-1 and H1-1E

1 Trotter step 2 Trotter steps

t H1-1 H1-1E
H1-1E

(⇥2 stats)
Theory H1-1 H1-1E

H1-1E

(⇥2 stats)
Theory

0.5 0.175(29) 0.162(28) 0.144(19) 0.089 0.100(29) 0.182(37) 0.173(25) 0.088

1.0 0.333(35) 0.303(34) 0.302(25) 0.315 0.269(43) 0.248(41) 0.272(29) 0.270

1.5 0.594(37) 0.547(38) 0.559(27) 0.582 0.404(48) 0.416(49) 0.429(33) 0.391

2.0 0.798(30) 0.792(30) 0.794(22) 0.801 0.530(47) 0.563(51) 0.593(35) 0.547

2.5 0.884(24) 0.896(23) 0.879(17) 0.931 0.667(41) 0.779(43) 0.771(30) 0.792

TABLE II. The probability of �-decay, �� ! �0 + e+ ⌫, on L = 1 spatial lattice with mu = 0.9, md = 2.1, me,⌫ = 0, g = 2
and G = 0.5. These simulations were performed using Quantinuum’s H1-1 and H1-1E and included the initial state preparation
and subsequent time evolution under 1 and 2 Trotter steps. The results are displayed in Fig. 6. The columns labeled (⇥2
stats) were obtained using 400 shots, compared to the rest, that used 200 shots, and uncertainties were computed assuming
the results follow a binomial distribution.

grows linearly with its distance from the boundary, leading to a force on colored objects. This will cause colored
errors in the bulk to migrate to the edge of the lattice where they could be detected and possibly removed. This is one
benefit of using axial gauge, where Gauss’s law is automatically enforced, and a colored “error” in the bulk generates
a color flux tube that extends to the boundary.

Localized two-bit-flip errors can create color-singlet excitations that do not experience a force towards the boundary,
but which are vulnerable to weak decay. For su�ciently large lattices, color singlet excitations will decay weakly down
to stable states enabled by the near continuum of lepton states. In many ways, this resembles the quantum imaginary-
time evolution (QITE) [184–186] algorithm, which is a special case of coupling to open systems, where quantum
systems are driven into their ground state by embedding them in a larger system that acts as a heat reservoir. One
can speculate that, in the future, quantum simulations of QCD will benefit from also including electroweak interactions
as a mechanism to cool the strongly-interacting sector from particular classes of errors.

This particular line of investigation is currently at a “schematic” level, and significantly more work is required to
quantify it’s utility. Given the quantum resource requirements, it is likely that the Schwinger model will provide a
suitable system to explore such scenarios.

Time

Chernyshev et al, 
arXiv:2506.05757 [quant-ph].

 decay in (1+1)D QCD 
(IonQ)
0νββ

2 Trotter steps

7

FIG. 3. The time evolution of the lepton number (upper row) and lepton electric charge (lower row) during the decay of a
two-baryon state, |����i, in 1+1D QCD. Two steps of first-order Trotterized time evolution using approximate interactions
are implemented requiring 470 two-qubit gates. The left panels show the results obtained with a Majorana mass of mM = 1.7,
the center panels show results for mM = 0, and the right panels show the di↵erences between the mM = 1.7 and mM = 0
results. The orange points were obtained from IonQ Forte Enterprise, the blue diamonds correspond to noiseless simulation and
the light-blue dashed lines correspond to exact simulation with no approximations. The gray dotted line is added for reference.

Ideal Simulation QPU Results

t hL̂imM=0 hL̂imM=1.7 hQ̂eimM=0 hQ̂eimM=1.7 hL̂imM=0 hL̂imM=1.7 hQ̂eimM=0 hQ̂eimM=1.7

0.5 0.0 0.01 �0.45 �0.44 �0.06 ± 0.08 �0.09 ± 0.07 �0.52 ± 0.05 �0.54 ± 0.05
1.0 0.0 0.15 �1.10 �1.08 0.00 ± 0.06 0.12 ± 0.09 �0.90 ± 0.07 �0.86 ± 0.08
1.5 0.0 0.59 �1.20 �1.26 0.05 ± 0.05 0.59 ± 0.11 �1.04 ± 0.06 �1.25 ± 0.07
2.0 0.0 1.31 �1.09 �1.34 0.08 ± 0.07 1.43 ± 0.12 �1.13 ± 0.05 �1.41 ± 0.06

TABLE I. The lepton number and electric charge obtained from a noiseless statevector simulator (Ideal Simulation) and from
Forte Enterprise (QPU results). The QPU results correspond to the orange points (mean value and ±1� uncertainty) in Fig. 3.
Non-linear filtering has been applied to the raw results, which are also post-selected on the conservation of total electric charge,
red, green and blue color charges, as well as no leakage detected by the flag qubits.

hibit the expected time dependence of an exponential
decay. This is a finite-size e↵ect, and an exponential de-
cay is expected to emerge in the continuum and infinite
volume limits, where the density of states becomes su�-
ciently dense at the kinematics of the transition energy.
This was studied in detail in Appendix D of Ref. [61].

For mM = 0, while the lepton number remains consis-
tent with zero at all times, as expected, electric charge
is produced in the lepton sector. This is consistent with
single �-decay, 2⌫��-decay and transitions to other in-

termediate states that are energetically disfavored. The
baryons and leptons cannot separate after a decay due to
the small simulation volume, and the continual interac-
tions between baryons and leptons causes there to be a
non-zero lepton electric charge at all times.

The time dependence of lepton number and lepton elec-
tric charge, as displayed in Fig. 3, could, in principle,
reveal aspects of the underlying mechanism of the de-
cay process. Initially, the lepton sector has the quantum
numbers of the vacuum, L = Qe = 0. The expectation
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FIRST STEPS TOWARD NUCLEAR REACTION PROCESSES

Chai, Crippa, Jansen, Kühn, Pascuzzi, Tacchino, 
Tavernelli, Quantum 9, 1638 (2025).

Fermionic scattering: ! ≠ #

• We	again	observe	excess	entropy
with	respect	to	the	vacuum

• This	time	ΔD. E, * after	the	Collision:
Ø Effect	of	the	interaction
Ø Entropy	production	is	larger	for	larger	|F|
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FIG. 4. Simulations of inelastic particle production in one-dimensional Ising field theory. a) The energy density En throughout
the scattering process obtained with a MPS circuit simulator. The initial wavepacket parameters are k0 = 0.36⇡ and �k = 0.13,
and each wavepacket is supported on d & 21 sites. A Trotter step size of �t = 1/16 is used to evolve the system. b) Results
from simulations of scattering using L = 100 qubits of ibm marrakesh for a selection of times. At time t1 = 2.5, the initial
single-particle wavepackets begin to overlap and time t2 = 15 is shortly after the collision. The asymmetry of the energy density
in each “bump” at t3 = 25 heralds the formation of the |2i particle produced in the inelastic process 11 ! 12. The wavepacket
parameters are the same as in a), but a larger Trotter step size of �t = 0.5 is used for both the quantum simulation and the
MPS simulation it is compared to.

show the early stages of the scattering process where the
wavepackets are just beginning to overlap. The colli-
sion occurs at t ⇡ 8 (approximately nT = 16 Trotter
steps) in the quantum simulations. The later simula-
tion times probe the evolution of the post-collision state.
At t2 = 15 the wavepackets are just beginning to sepa-
rate, and by t3 = 25 asymptotic particles are beginning
to form. A systematic error becomes increasingly pro-
nounced at later times and only coarse-grained features
of the energy density agree with MPS simulations. De-
spite this, there are still identifiable signatures of inelas-
tic particle production at t3 = 25. The profile of each
wavepacket is asymmetrically skewed towards the cen-
ter, indicating a higher energy density closer to the point
of collision than away from it. This asymmetry is due
to the presence of the inelastically-produced |2i particle
in the wavefunction that travels slower. At even later
times, the asymptotic |2i particle produced in 11 ! 12
becomes identifiable as a separate “bump” in the energy
density that propagates at a low velocity. Unfortunately,
the cumulative e↵ects of noise made simulations beyond
t = 25 impossible on ibm marrakesh.

The gate counts, circuit depths and number of shots
for each simulation time are provided in Table I. The lat-
est simulation time corresponds to nT = 50 Trotter steps
and requires 6,412 two-qubit gates with a two-qubit gate
depth of 194. With such a large quantum volume, e↵ec-
tive error mitigation is crucial for recovering reliable re-
sults. A full description of our error mitigation strategy is
provided in Methods E, with certain aspects highlighted

t nT

# of two-
qubit gates

Two-qubit
gate depth

# of shots

2.5 5 1,732 59 1.28 ⇥ 106

15 30 4,332 134 1.28 ⇥ 106

25 50 6,412 194 2.56 ⇥ 106

TABLE I. Resources used in the quantum simulations per-

formed on 100 qubits of ibm marrakesh. For a given simu-
lation time t (first column), the number of Trotter steps nT

is given in the second column. The total number of two-
qubit gates and corresponding two-qubit gate depth is given
in columns three and four, respectively. The total number of
shots per simulation time, including all error mitigation over-
head, is given in column five.

here. Pauli twirling [81] shapes the noise into a stochas-
tic Pauli channel. For each simulation time, circuits that
evolve both | 2wpi and | vaci are run. The time evolu-
tion of the vacuum energy density is used to learn the
parameters of the Pauli noise channel. Noise-free observ-
ables in the scattering simulations are then estimated
using the learned noise model. This method, known as
Operator Decoherence Renormalization (ODR) [46], is
an extension of Refs. [26, 82]. A final error mitigation
step is performed in post-processing. In the absence of
Trotter and device errors, the total energy Etot =

P
n En

is conserved during time evolution. Rescaling the mea-
sured energy density to conserve Etot removes some of
the residual bias in the observables produced by ODR.

See also Zemlevskiy, arXiv:2411.02486 [quant-ph] 
for a (1+1)D scalar field theory example.

Scattering in a (1+1)D Ising field theory (IBM)
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FIG. 1. a) Mapping the L = 56 lattice onto the qubits of IBM’s quantum computer ibm_torino (bottom left). The dynamical
re-arrangement of charges in the vacuum screens the interactions between electric charges in the Schwinger model, giving rise to
an exponential decay of correlations between spatial-site charges, hQ̂

n
Q̂

n+d
i (top and bottom right). b) The charge screening

informs an efficient construction of the quantum circuits used to simulate hadron dynamics. SC-ADAPT-VQE is used to
prepare the vacuum and wavepacket, which are time-evolved using Trotterized circuits implementing e�itĤ with a truncated
electric interaction.

hierarchies in length scales to determine low-depth quantum circuits for state preparation. Using a hybrid workflow,
quantum circuits are determined and optimized on a series of small and modest-sized systems using classical computers,
and then systematically scaled to large systems to be executed on a quantum computer. In Sec. III, SC-ADAPT-VQE
is extended to the preparation of localized states, and used to establish a hadron wavepacket on top of the interacting
vacuum; see Fig. 1b). The wavepacket preparation circuits are optimized on a series of a small lattices by maximizing
the overlap with an adiabatically prepared wavepacket. The locality of the target state ensures that these circuits can
be systematically extrapolated to prepare hadron wavepackets on large lattices.

In Sec. VI, the techniques and ideas described in the previous paragraphs are applied to quantum simulations of
hadron dynamics on L = 56 (112 qubit) lattices using IBM’s quantum computer ibm_torino. The initial state is
prepared using SC-ADAPT-VQE, and time evolution is implemented with up to 14 Trotter steps, requiring 13,858
CNOTs (CNOT depth 370). After applying a suite of error mitigation techniques, measurements of the local chiral
condensate show clear signatures of hadron propagation. The results obtained from ibm_torino are compared to
classical simulations using the cuQuantum Matrix Product State (MPS) simulator. In these latter calculations, the
bond dimension in the tensor network simulations grows with the simulation time, requiring increased classical com-
puting overhead. This work points to quantum simulations of more complex processes, such as inelastic collisions,
fragmentation and hadronization, as being strong candidates for a near-term quantum advantage.

II. SYSTEMATIC TRUNCATION OF THE ELECTRIC INTERACTIONS

The Schwinger model is quantum electrodynamics in 1+1D, the theory of electrons and positrons interacting via
photon exchange. In 1+1D, the photon is not a dynamical degree of freedom, as it is completely constrained by
Gauss’s law. As a result, the photon can be removed as an independent field, leaving a system of fermions interacting
through a linear Coulomb potential. In axial gauge with open boundary conditions (OBCs), zero background electric
field, and using the Jordan-Wigner (JW) mapping, the Schwinger model Hamiltonian on a lattice with L spatial sites
(2L staggered sites) is given by [120, 121]

Ĥ = Ĥm + Ĥkin + Ĥel =
m
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The (bare) mass and coupling are m and g, respectively, and the staggered lattice spacing has been set to one. Due
to the non-perturbative mechanism of confinement, all low-energy states (the vacuum and hadrons) have charge zero.

16

t NT # of CNOTs
(per t)

CNOT depth
(per t)

# of distinct
circuits (per t)

# of twirls
(per circuit)

# of shots
(per twirl)

Executed
CNOTs (⇥109)

Total # of
shots (⇥106)

1 & 2 2 2,746 70 4 480 8,000 4 ⇥ 2 ⇥ 10.5 4 ⇥ 2 ⇥ 3.8

3 & 4 4 4,598 120 4 480 8,000 4 ⇥ 2 ⇥ 17.7 4 ⇥ 2 ⇥ 3.8

5 & 6 6 6,450 170 4 480 8,000 4 ⇥ 2 ⇥ 24.8 4 ⇥ 2 ⇥ 3.8

7 & 8 8 8,302 220 4 480 8,000 4 ⇥ 2 ⇥ 31.9 4 ⇥ 2 ⇥ 3.8

9 & 10 10 10,154 270 4 160 8,000 4 ⇥ 2 ⇥ 13.0 4 ⇥ 2 ⇥ 1.3

11 & 12 12 12,006 320 4 160 8,000 4 ⇥ 2 ⇥ 15.4 4 ⇥ 2 ⇥ 1.3

13 & 14 14 13,858 370 4 160 8,000 4 ⇥ 2 ⇥ 17.7 4 ⇥ 2 ⇥ 1.3

Totals 1.05 ⇥ 1012 1.54 ⇥ 108

TABLE III. Details of our quantum simulations performed using 112 qubits of IBM’s ibm_torino Heron processor. For a given
simulation time, t (first column), the second column gives the number of employed Trotter steps NT . The third and fourth
columns give the number of CNOTs and corresponding CNOT depth. The CNOT totals given in the third column include the
cancellations that occur during transpilation, and the CNOT depth should be compared to the minimum depth that is equal to
twice the number of CNOTs/qubit (49, 82, 115, 148, 181, 214, 247 for increasing NT ) to assess the sparsity of the circuits. The
fifth column gives the number of distinct circuits per t (this number does not include the circuits needed for readout mitigation)
and the sixth column gives the number of Pauli-twirls executed per distinct circuit. For each twirl, 8,000 shots are performed
(seventh column). The total number of executed CNOT gates are given in the eighth column, and the total number of shots are
given in the ninth column. The total number of CNOT gates applied in this production is one trillion, and the total number
of shots is 154 million.
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FIG. 10. The time evolution of the vacuum subtracted chiral condensate Xj(t), defined in Eq. (18), for a L = 56 (112
qubits) spatial-site lattice. The initial state is prepared using the 2-step SC-ADAPT-VQE vacuum and wavepacket preparation
circuits. Time evolution is implemented using a second-order Trotterization of the Hamiltonian with the � = 1 truncated electric
interaction. The left side shows the results of error-free classical simulations from the cuQuantum MPS simulator, while the right
side shows the CP-averaged results obtained using IBM’s superconducting-qubit digital quantum computer ibm_torino (both
sides show the MPS result for t = 0). Due to CP symmetry, the right and left halves would be mirror images of each other in
the absence of device errors. A more detailed view for each time slice is given in Fig. 11, and discussions of the error-mitigation
techniques are presented in the main text and App. G.

These ⌘O are used to estimate the expectation values from the physics circuits (using the same relation). For
wavepacket (vacuum) time evolution, we choose a mitigation circuit that creates the wavepacket (vacuum), time
evolves with half of the Trotter steps until t/2 and then evolves for �t/2 with the remaining Trotter steps [41]. This
forwards-backwards time evolution corresponds to the identity operator in the absence of device errors, and restricts
our simulations to an even number of Trotter steps. To determine the ⌘O, the prediction of a desired observable from
the mitigation circuit must be known. In our case, this requires classically computing h�̂ji in both the SC-ADAPT-
VQE vacuum and wavepacket. This can be accomplished even for large systems using the qiskit or cuQuantum
MPS simulator, as was demonstrated in Ref. [108] for the SC-ADAPT-VQE vacuum up to L = 500. Interestingly,
our numerical calculations highlight that it is the time evolution, and not the state preparation, that is difficult for
classical MPS techniques.

We implement time evolution for t = {1, 2, . . . , 14} with 2d
t
2e second-order Trotter steps (a maximum step size of

�t = 1). As shown in the previous section, this step size does not introduce significant Trotter errors. The number of
CNOTs and corresponding CNOT depth for each simulation time are given in Table III, and range from 2,746 CNOTs
(depth 70) for 2 Trotter steps to 13,858 CNOTs (depth 370) for 14 Trotter steps. The results for Xj(t) obtained
from ibm_torino and the MPS simulator are shown in Fig. 10, with a breakdown of each t given in Fig. 11 (the

Farrell, Illa, 
Ciavarella, Savage, 
Phys.Rev.D 109 (2024) 
11, 114510.

Hadron wave-packet evolution 
in the Schwinger model (112 
staggered sites with IBM with 
noise mitigation):
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FIG. 4. The schematic diagram of the double smearing of the mesonic wave packet. b
†
 is assembled from

b
†
k weighted with  (k), the manually-adopted wave-packet profile. Each b

†
k is built upon optimized mesonic

ansatz ⌘(p, q).

The fermion-antifermion pairs, or bare mesons, are distributed in momentum space following
the ansatz function ⌘(p, q). Similar to Ref. [33], we consider a Gaussian distribution in relative
momentum p � q:

⌘(p, q) = N⌘ exp
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Here, µ
A

k
and �

A

k
are real parameters, superscript A denotes the ansatz, and N⌘ is the normalization

factor. The Gaussian distribution ensures that a fermion and an antifermion with a large relative
momentum are penalized. This is reasonable, as otherwise the constituents will eventually move far
away from each other and would not form a bound excitation. µ

A

k
controls the average separation of

the fermion and antifermion in position space. Finally, because of the Kronecker delta in momenta
in Eq. (8), p + q is forced to match the total momentum of the meson excitation, k.

In Ref. [33], b
†

k
|⌦i describes the momentum eigenstate |ki with �

A

k
and µ

A

k
manually tuned

for each k. In this work, optimization on
�
�
A

k
, µ

A

k

�
is explicitly performed by searching for the

lowest-energy state with b
†

k
excitations in each k sector. For small systems, b

†

k
with the optimized

parameters is benchmarked against exact-diagonalization results to ensure that |ki is indeed created
as desired. The optimization strategy and results will be discussed thoroughly in the next section.
For larger systems, one can resort to a variational quantum eigensolver (VQE) to perform energy
minimization in each sector using a quantum computer. Such details will be presented in Sec. III.

Once the optimized b
†

k
in each momentum sector is obtained, the wave-packet creation operator

b
†

 
is just a weighted assembly of them following  (k). Since the simulation is eventually done in

position space, it is useful to express Eq. (8) in terms of position-space mesonic operators when
implemented as quantum circuits:

b
†

 
=
X

m,n2�

Cm,n
fMm,n. (12)

Here, fMm,n is the Jordan-Wigner transformed Mm,n that is obtained by substituting Eq. (3) in
the expression for Mm,n given below Eq. (8). For example, consider m < n and n � m < N/2,
then a forward-wrapped meson creation operator Mm,n leads to

fMm,n =
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FIG. 10. Physical basis-state probabilities of two wave packets in the case of Z2 LGT with mf = 1
and ✏ = 0.3, generated on the Quantinuum H1-1 quantum computer compared with those obtained from
| iexact, | iideal, and | itrunc, as defined in the text, as well as the associated local particle densities, �n.
The physical basis states are listed in Table II in Appendix E. The hardware results shown are after a
symmetry-based error mitigation as discussed in the text. These agree reasonably well with the truncated-
circuit output. The density plots clearly show the change in the shape of wave packets with varying �, i.e.,
larger � results in a narrower wave packet in position space.

bootstrap sample, the events with the ancilla measured to be 0 (due to the residual errors) are
excluded, and the remaining probabilities are normalized and collected. For both wave packets,
104 resamplings are used to ensure bootstrap-sample mean distributions, hence the standard devi-
ations, are stabilized. In Fig. 10, the uncertainties on the probabilities are the standard deviation
of the bootstrap resampling, on which a standard error propagation gives the uncertainties on the
staggered density.

The physical basis-states probabilities show acceptable agreement with the truncated-circuit
results obtained via statevector evolution. Perhaps a more meaningful comparison is with the
result obtained from a classical circuit simulator that uses the same number of measurement
shots as that in the hardware implementation. Such ‘noiseless‘ simulation results are presented in
Appendix D. We further employ the Quantinuum’s emulator to inspect how accurately it agrees
with the hardware results for the circuits implemented in this work, and present the result in
the same Appendix. In both cases, the uncertainty estimation described above using bootstrap

4

FIG. 1. a) Mapping the L = 56 lattice onto the qubits of IBM’s quantum computer ibm_torino (bottom left). The dynamical
re-arrangement of charges in the vacuum screens the interactions between electric charges in the Schwinger model, giving rise to
an exponential decay of correlations between spatial-site charges, hQ̂

n
Q̂

n+d
i (top and bottom right). b) The charge screening

informs an efficient construction of the quantum circuits used to simulate hadron dynamics. SC-ADAPT-VQE is used to
prepare the vacuum and wavepacket, which are time-evolved using Trotterized circuits implementing e�itĤ with a truncated
electric interaction.

hierarchies in length scales to determine low-depth quantum circuits for state preparation. Using a hybrid workflow,
quantum circuits are determined and optimized on a series of small and modest-sized systems using classical computers,
and then systematically scaled to large systems to be executed on a quantum computer. In Sec. III, SC-ADAPT-VQE
is extended to the preparation of localized states, and used to establish a hadron wavepacket on top of the interacting
vacuum; see Fig. 1b). The wavepacket preparation circuits are optimized on a series of a small lattices by maximizing
the overlap with an adiabatically prepared wavepacket. The locality of the target state ensures that these circuits can
be systematically extrapolated to prepare hadron wavepackets on large lattices.

In Sec. VI, the techniques and ideas described in the previous paragraphs are applied to quantum simulations of
hadron dynamics on L = 56 (112 qubit) lattices using IBM’s quantum computer ibm_torino. The initial state is
prepared using SC-ADAPT-VQE, and time evolution is implemented with up to 14 Trotter steps, requiring 13,858
CNOTs (CNOT depth 370). After applying a suite of error mitigation techniques, measurements of the local chiral
condensate show clear signatures of hadron propagation. The results obtained from ibm_torino are compared to
classical simulations using the cuQuantum Matrix Product State (MPS) simulator. In these latter calculations, the
bond dimension in the tensor network simulations grows with the simulation time, requiring increased classical com-
puting overhead. This work points to quantum simulations of more complex processes, such as inelastic collisions,
fragmentation and hadronization, as being strong candidates for a near-term quantum advantage.

II. SYSTEMATIC TRUNCATION OF THE ELECTRIC INTERACTIONS

The Schwinger model is quantum electrodynamics in 1+1D, the theory of electrons and positrons interacting via
photon exchange. In 1+1D, the photon is not a dynamical degree of freedom, as it is completely constrained by
Gauss’s law. As a result, the photon can be removed as an independent field, leaving a system of fermions interacting
through a linear Coulomb potential. In axial gauge with open boundary conditions (OBCs), zero background electric
field, and using the Jordan-Wigner (JW) mapping, the Schwinger model Hamiltonian on a lattice with L spatial sites
(2L staggered sites) is given by [120, 121]

Ĥ = Ĥm + Ĥkin + Ĥel =
m
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The (bare) mass and coupling are m and g, respectively, and the staggered lattice spacing has been set to one. Due
to the non-perturbative mechanism of confinement, all low-energy states (the vacuum and hadrons) have charge zero.
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t NT # of CNOTs
(per t)

CNOT depth
(per t)

# of distinct
circuits (per t)

# of twirls
(per circuit)

# of shots
(per twirl)

Executed
CNOTs (⇥109)

Total # of
shots (⇥106)

1 & 2 2 2,746 70 4 480 8,000 4 ⇥ 2 ⇥ 10.5 4 ⇥ 2 ⇥ 3.8

3 & 4 4 4,598 120 4 480 8,000 4 ⇥ 2 ⇥ 17.7 4 ⇥ 2 ⇥ 3.8

5 & 6 6 6,450 170 4 480 8,000 4 ⇥ 2 ⇥ 24.8 4 ⇥ 2 ⇥ 3.8

7 & 8 8 8,302 220 4 480 8,000 4 ⇥ 2 ⇥ 31.9 4 ⇥ 2 ⇥ 3.8

9 & 10 10 10,154 270 4 160 8,000 4 ⇥ 2 ⇥ 13.0 4 ⇥ 2 ⇥ 1.3

11 & 12 12 12,006 320 4 160 8,000 4 ⇥ 2 ⇥ 15.4 4 ⇥ 2 ⇥ 1.3

13 & 14 14 13,858 370 4 160 8,000 4 ⇥ 2 ⇥ 17.7 4 ⇥ 2 ⇥ 1.3

Totals 1.05 ⇥ 1012 1.54 ⇥ 108

TABLE III. Details of our quantum simulations performed using 112 qubits of IBM’s ibm_torino Heron processor. For a given
simulation time, t (first column), the second column gives the number of employed Trotter steps NT . The third and fourth
columns give the number of CNOTs and corresponding CNOT depth. The CNOT totals given in the third column include the
cancellations that occur during transpilation, and the CNOT depth should be compared to the minimum depth that is equal to
twice the number of CNOTs/qubit (49, 82, 115, 148, 181, 214, 247 for increasing NT ) to assess the sparsity of the circuits. The
fifth column gives the number of distinct circuits per t (this number does not include the circuits needed for readout mitigation)
and the sixth column gives the number of Pauli-twirls executed per distinct circuit. For each twirl, 8,000 shots are performed
(seventh column). The total number of executed CNOT gates are given in the eighth column, and the total number of shots are
given in the ninth column. The total number of CNOT gates applied in this production is one trillion, and the total number
of shots is 154 million.
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FIG. 10. The time evolution of the vacuum subtracted chiral condensate Xj(t), defined in Eq. (18), for a L = 56 (112
qubits) spatial-site lattice. The initial state is prepared using the 2-step SC-ADAPT-VQE vacuum and wavepacket preparation
circuits. Time evolution is implemented using a second-order Trotterization of the Hamiltonian with the � = 1 truncated electric
interaction. The left side shows the results of error-free classical simulations from the cuQuantum MPS simulator, while the right
side shows the CP-averaged results obtained using IBM’s superconducting-qubit digital quantum computer ibm_torino (both
sides show the MPS result for t = 0). Due to CP symmetry, the right and left halves would be mirror images of each other in
the absence of device errors. A more detailed view for each time slice is given in Fig. 11, and discussions of the error-mitigation
techniques are presented in the main text and App. G.

These ⌘O are used to estimate the expectation values from the physics circuits (using the same relation). For
wavepacket (vacuum) time evolution, we choose a mitigation circuit that creates the wavepacket (vacuum), time
evolves with half of the Trotter steps until t/2 and then evolves for �t/2 with the remaining Trotter steps [41]. This
forwards-backwards time evolution corresponds to the identity operator in the absence of device errors, and restricts
our simulations to an even number of Trotter steps. To determine the ⌘O, the prediction of a desired observable from
the mitigation circuit must be known. In our case, this requires classically computing h�̂ji in both the SC-ADAPT-
VQE vacuum and wavepacket. This can be accomplished even for large systems using the qiskit or cuQuantum
MPS simulator, as was demonstrated in Ref. [108] for the SC-ADAPT-VQE vacuum up to L = 500. Interestingly,
our numerical calculations highlight that it is the time evolution, and not the state preparation, that is difficult for
classical MPS techniques.

We implement time evolution for t = {1, 2, . . . , 14} with 2d
t
2e second-order Trotter steps (a maximum step size of

�t = 1). As shown in the previous section, this step size does not introduce significant Trotter errors. The number of
CNOTs and corresponding CNOT depth for each simulation time are given in Table III, and range from 2,746 CNOTs
(depth 70) for 2 Trotter steps to 13,858 CNOTs (depth 370) for 14 Trotter steps. The results for Xj(t) obtained
from ibm_torino and the MPS simulator are shown in Fig. 10, with a breakdown of each t given in Fig. 11 (the
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FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.

26

FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.

26

FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.

26

FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.

26

FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.

Hadron scattering in a (1+1)D  gauge theory (IonQ)Z2

ZD, Hsieh, Kadam, arXiv:2505.20408 [quant-ph].



26

FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.

26

FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.

26

FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.

26

FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.

26

FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.

Hadron scattering in a (1+1)D  gauge theory (IonQ)Z2

Hadron scattering in a (1+1)D U(1) quantum link model (IBM)

ZD, Hsieh, Kadam, arXiv:2505.20408 [quant-ph].

Schuhmacher, Su, Osborne, Gandon, Halimeh, Tavernelli, arXiv:2505.20387 [quant-ph].



26

FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.

26

FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.

26

FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.

26

FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.

26

FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.

Hadron scattering in a (1+1)D  gauge theory (IonQ)Z2

Hadron scattering in a (1+1)D U(1) quantum link model (IBM)

ZD, Hsieh, Kadam, arXiv:2505.20408 [quant-ph].

Schuhmacher, Su, Osborne, Gandon, Halimeh, Tavernelli, arXiv:2505.20387 [quant-ph].

Wang et al, arXiv:2508.20759 [quant-ph].

Meson scattering in a  floquet system on a superconducting chipZ2 2

Ti
m
e

Site

Kink

String

1-meson

2-meson

Q2 Q3 Q4

Q1

Q0 Q7

Q5

Q6

QPU

 layers

Q0

Q1
Q2
Q3
Q4
Q5
Q6
Q7

noitaraperp etats laitinI

1 1 2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

(a) (b) (c)

FIG. 1. Set-up. (a) Diagram of the superconducting quantum processor. The device consists of 9 tunable transmon qubits (blue crosses)
arranged in a 3 × 3 square lattice, with each pair of nearest-neighbor qubits connected by a tunable coupler (purple bonds). The light-colored
qubit and couplers are used in this experiment, effectively reducing the system to a spin chain with open boundary conditions. (b) Quantum
circuit for the digital simulation. The dynamics consists of T driving cycles, each comprising three layers: the first layer applies single-qubit
rotations around the x-axis to implement a transverse field; the second layer applies z-axis rotations to implement a longitudinal field; the final
layer combines additional z-rotations and controlled-phase gates to realize the Ising interaction. A detailed gate decomposition is provided in
the Supplemental Material (SM) [45]. (c) Schematic illustration of kink confinement and mesons. The system is initialized with two adjacent
kinks connected by a string. During time evolution, the kinks remain close due to confinement, forming a bound state, i.e., a meson. A meson
with string length ` is labeled as an `-meson.

layer [50, 51], see Fig. 1(a). Each nearest-neighbor pair is
coupled via a tunable coupler that enables high-fidelity two-
qubit gates. The median energy relaxation time T1 is approx-
imately 30 µs. Detailed device parameters are provided in the
Supplemental Material (SM) [45] and Refs. [52, 53]. In this
work, we use 8 qubits along the edge of the lattice to form a
1D spin chain, as illustrated in Fig. 1(a).

We consider a Floquet system where each driving period is
governed by the unitary operator

Û = exp(−ihẐ) exp(−iµX̂) exp(iJĤzz), (1)

with Ẑ = ∑j �̂
z

j
, X̂ = ∑j �̂

x

j
, and Ĥzz = −∑j �̂

z

j
�̂
z

j+1, where
�̂
↵

j
(↵ = x, y, z) denote the Pauli matrices. The Floquet evolu-

tion Û is implemented digitally: single-qubit rotations e−iµX̂
and e

−ihẐ are realized with a median fidelity 99.95%, while
the entangling evolution e

iJĤzz is realized via controlled-
phase gates with median fidelity 99.33% [45]. The full quan-
tum circuit is shown in Fig. 1(b), where the evolution time is
characterized by total cycles T . In this experiment, the max-
imum T is up to 15, where the finial state still retains high
fidelity.

In the perturbative regime h,µ, J � 1, the Floquet dynam-
ics approximate those of a time-independent Ising model with
transverse and longitudinal fields. This model is equivalent to
a Z2 LGT coupled to matter fields and serves as a paradig-
matic setting for exploring confinement and meson excita-
tions [25]. For h = 0 and J > µ, the system resides in a fer-
romagnetic phase, where the elementary excitations are kinks
(domain walls). When h ≠ 0, kinks become confined, and
tend to form bound states connected by strings of anti-aligned
spins, i.e., mesons [see Fig. 1(c)].

In this experiment, we explore a nonperturbative regime
with J = ⇡�4 and µ = ⇡�10, where the dynamics deviate from

those generated by a time-independent Hamiltonian. How-
ever, we can still use a Floquet Z2 LGT coupled to a matter
field to describe the dynamics as [31, 45, 54]

Û = exp(−ih�
j
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ŝ
x

j+1)
exp(iJ�

j

ŝ
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), (2)

where ŝ↵
j

and ⌧̂↵
j

(↵ = x, y, z) are both the Pauli matrices, rep-
resenting the matter and gauge fields, respectively. Here, the
Z2 gauge generator is Ĝj = ⌧̂xj− 1

2
ŝ
z

j
⌧̂
x

j+ 1
2

, i.e., [Ĝj , Û] = 0. In
addition, for h = 0 and J > µ, the system remains in a Flo-
quet ferromagnetic phase supporting kink excitations [55–57].
Thus, when a finite longitudinal field is introduced, confine-
ment and stable meson excitations are expected to emerge in
this Floquet system. In the following, we will experimentally
demonstrate this conjecture and investigate the meson scatter-
ing. Here, we call a meson as a `-meson, when its string length
is `, see Fig. 1(c). We also note that these mesons are bare
mesons, corresponding to the exact eigenstates of the µ = 0
(non-interacting) limit.

Confinement and mesons.—We first demonstrate confine-
ment dynamics and meson excitations in this Floquet sys-
tem. As a starting point, we prepare a single-kink initial state,� 0� = �10000000�, and monitor the kink density, defined as

d̂
j+ 1

2
= (1 − �̂z

j
�̂
z

j+1)�2. (3)

For h = 0, the kink propagates ballistically and forms a light-
cone-like profile [see Fig. 2(a)], indicating that kinks are free
excitations in this case. In contrast, for a finite longitudinal
field h = ⇡�10, the kink remains localized and exhibits an
oscillation near its initial position [see Fig. 2(b)]. This be-
havior resembles Bloch oscillations [58–61], arising from the
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FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.
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FIG. 9. Trotter time evolution of �n for NP = 5 with 11 system qubits. Each column (row) shares the
x-axis (y-axis) label. The plot legends and error bars are the same as in Fig. 7. The exact results were
obtained by obtaining the time evolution unitary matrix U(t) = exp (�iHt) from exact exponentiation of
the Hamiltonian matrix for a given time t, and acting it on the corresponding initial state in Fig. 7 (a). The
quantum circuits for the Trotter time evolution were taken with time steps of �t = 1 in the lattice spacing
units (a = 1). The meshed squares for t = 7 and t = 8 plots denote the hardware-noise dominated results.
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FIG. 1. Set-up. (a) Diagram of the superconducting quantum processor. The device consists of 9 tunable transmon qubits (blue crosses)
arranged in a 3 × 3 square lattice, with each pair of nearest-neighbor qubits connected by a tunable coupler (purple bonds). The light-colored
qubit and couplers are used in this experiment, effectively reducing the system to a spin chain with open boundary conditions. (b) Quantum
circuit for the digital simulation. The dynamics consists of T driving cycles, each comprising three layers: the first layer applies single-qubit
rotations around the x-axis to implement a transverse field; the second layer applies z-axis rotations to implement a longitudinal field; the final
layer combines additional z-rotations and controlled-phase gates to realize the Ising interaction. A detailed gate decomposition is provided in
the Supplemental Material (SM) [45]. (c) Schematic illustration of kink confinement and mesons. The system is initialized with two adjacent
kinks connected by a string. During time evolution, the kinks remain close due to confinement, forming a bound state, i.e., a meson. A meson
with string length ` is labeled as an `-meson.

layer [50, 51], see Fig. 1(a). Each nearest-neighbor pair is
coupled via a tunable coupler that enables high-fidelity two-
qubit gates. The median energy relaxation time T1 is approx-
imately 30 µs. Detailed device parameters are provided in the
Supplemental Material (SM) [45] and Refs. [52, 53]. In this
work, we use 8 qubits along the edge of the lattice to form a
1D spin chain, as illustrated in Fig. 1(a).

We consider a Floquet system where each driving period is
governed by the unitary operator

Û = exp(−ihẐ) exp(−iµX̂) exp(iJĤzz), (1)

with Ẑ = ∑j �̂
z

j
, X̂ = ∑j �̂

x

j
, and Ĥzz = −∑j �̂

z

j
�̂
z

j+1, where
�̂
↵

j
(↵ = x, y, z) denote the Pauli matrices. The Floquet evolu-

tion Û is implemented digitally: single-qubit rotations e−iµX̂
and e

−ihẐ are realized with a median fidelity 99.95%, while
the entangling evolution e

iJĤzz is realized via controlled-
phase gates with median fidelity 99.33% [45]. The full quan-
tum circuit is shown in Fig. 1(b), where the evolution time is
characterized by total cycles T . In this experiment, the max-
imum T is up to 15, where the finial state still retains high
fidelity.

In the perturbative regime h,µ, J � 1, the Floquet dynam-
ics approximate those of a time-independent Ising model with
transverse and longitudinal fields. This model is equivalent to
a Z2 LGT coupled to matter fields and serves as a paradig-
matic setting for exploring confinement and meson excita-
tions [25]. For h = 0 and J > µ, the system resides in a fer-
romagnetic phase, where the elementary excitations are kinks
(domain walls). When h ≠ 0, kinks become confined, and
tend to form bound states connected by strings of anti-aligned
spins, i.e., mesons [see Fig. 1(c)].

In this experiment, we explore a nonperturbative regime
with J = ⇡�4 and µ = ⇡�10, where the dynamics deviate from

those generated by a time-independent Hamiltonian. How-
ever, we can still use a Floquet Z2 LGT coupled to a matter
field to describe the dynamics as [31, 45, 54]
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2
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j
), (2)

where ŝ↵
j

and ⌧̂↵
j

(↵ = x, y, z) are both the Pauli matrices, rep-
resenting the matter and gauge fields, respectively. Here, the
Z2 gauge generator is Ĝj = ⌧̂xj− 1

2
ŝ
z

j
⌧̂
x

j+ 1
2

, i.e., [Ĝj , Û] = 0. In
addition, for h = 0 and J > µ, the system remains in a Flo-
quet ferromagnetic phase supporting kink excitations [55–57].
Thus, when a finite longitudinal field is introduced, confine-
ment and stable meson excitations are expected to emerge in
this Floquet system. In the following, we will experimentally
demonstrate this conjecture and investigate the meson scatter-
ing. Here, we call a meson as a `-meson, when its string length
is `, see Fig. 1(c). We also note that these mesons are bare
mesons, corresponding to the exact eigenstates of the µ = 0
(non-interacting) limit.

Confinement and mesons.—We first demonstrate confine-
ment dynamics and meson excitations in this Floquet sys-
tem. As a starting point, we prepare a single-kink initial state,� 0� = �10000000�, and monitor the kink density, defined as

d̂
j+ 1

2
= (1 − �̂z

j
�̂
z

j+1)�2. (3)

For h = 0, the kink propagates ballistically and forms a light-
cone-like profile [see Fig. 2(a)], indicating that kinks are free
excitations in this case. In contrast, for a finite longitudinal
field h = ⇡�10, the kink remains localized and exhibits an
oscillation near its initial position [see Fig. 2(b)]. This be-
havior resembles Bloch oscillations [58–61], arising from the
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FIG. 2. (a) A schematic comparison of the approach of this work and adiabatic state preparation. The
blue and magenta paths represent the wave-packet creation in the JLP formalism. In order to arrive at the
interacting wave packet, the adiabatic evolution is applied to the free wave-packet state created by a

†
 , which

acts on the free ground state, |⌦ifree. The algorithm proposed in this work, the green path, directly builds

the interacting wave-packet creation operator b
†
 that acts on the interacting ground state, |⌦i. | i

in
free(int)

denotes the incoming wave packet in the free (interacting) theory.  (k) denotes the wave-packet profile and
k is the momentum, see Sec. II for details. (b) A summary of various steps of the algorithm of this work,
as detailed in Sec. III A.

a number of entangling gates that is polynomial in the system size, and uses a single ancilla qubit,
benefiting from recently developed algorithms based on singular-value decomposition of opera-
tors [54]. The quantum circuit that prepares a single wave packet is constructed for the case of the
Z2 LGT. For 6 fermionic sites (12+1 qubits), this circuit is executed on Quantinuum’s hardware,
System Model H1, a quantum computer based on trapped-ion technology. Both the algorithmic
and experimental fidelities are analyzed, and various sources of errors are discussed. We further
discuss observables that can be measured e�ciently in experiment to verify the accuracy of the
generated wave packet. While (controlled) approximations are made to achieve shallower circuits,
and a rather simple noise mitigation is applied based on symmetry considerations, high fidelities
are still achieved in this small demonstration. Hence, quantum simulation of hadron-hadron col-
lisions in lower-dimensional gauge theories may be within the reach of the current generation of
quantum hardware.

This paper is organized as follows. In Sec. IIA, we introduce the 1+1-dimensional LGTs coupled
to staggered fermions. We then specify an interacting creation-operator ansatz in such theories in
Sec. II B, and demonstrate its validity through a numerical study in the case of Z2 and U(1) LGTs
in Sec. II C. The state-preparation algorithm and the circuit design are detailed in Sec. III A, with
a focus on the case of Z2 LGT given its lower simulation cost. Section III B includes our results on
the creation of wave packets with the use of both numerical simulators and a quantum computer.
We end in Sec. IV with a summary and outlook. A number of appendices are provided to provide
further details on the ansatz validity, circuit performance, and quantum-emulator comparisons.
All data associated with numerical optimizations and circuit implementations are provided in
Supplemental Material.

OUR STRATEGY COMPARED WITH JORDAN-LEE-PRESKILL
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Beside Jordan, Lee, Preskill, Science 336, 1130-1133 (2012), check out other recent interesting digital algorithms for 
hadronic wave-packet creation in: Turco, Quinta, Seixas, and Omar, arXiv:2305.07692 [quant-ph], Kreshchuk, Vary, Love, 
arXiv:2310.13742 [quant-ph], Chai, Crippa, Jansen, Kühn, Pascuzzi, Tacchino, and Tavernelli, arXiv:2312.02272 [quant-ph], 
Farrell, Illa, Ciavarella, and Savage, arXiv:2401.08044 [quant-ph].

ZD, Hsieh, and Kadam, Quantum 8, 1520 (2024) and arXiv:2505.20408 [quant-ph].
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FIG. 3. The degrees of freedom in the Z2 LGT are shown in (a). A lattice site n (taken to be even in this
figure) and its neighboring lattice site n + 1 are denoted by circles, and the gauge link connecting them
is denoted by a line. A fermion (antifermion) at n (n + 1) is represented by an occupied (unoccupied)
lattice site, which is shown here by 1 (0) in a green circle, and the absence of a fermion (antifermion) at
n (n + 1) is shown by 0 (1) in a red circle. The corresponding fermion (antifermion) mass term in Eq. (1)
is written above the lattice site n (n + 1). The spin- 12 hardcore boson residing on the link is indicated by
a blue arrow along with its electric-field Hamiltonian term given in Eq. (1). For ✏ < 0 which is used in
the simulations of this work and assumed in the figure, the down spin (green link) has higher electric-field
energy than the up spin (red link). The action of the operator ⇠

†
n�̃

x
n⇠n+1, which is a part of the fermion

hopping Hamiltonian in Eq. (1) for a Z2 LGT, is depicted in (b). The upper (lower) dotted box in (c)
shows configurations that satisfy the Gauss’s law given in Eq. (2) for the case of the Z2 LGT at an even
(odd) lattice site. Three di↵erent states for a Z2 LGT with PBCs and 6 lattice sites are shown in (d). The
top picture represents the strong-coupling vacuum state, |⌦i0, while the middle (bottom) picture depicts
a forward-wrapped (backward-wrapped) 3-length bare-meson state created by the action of bare mesonic
operators, defined in Sec. II B, on |⌦i0.

LGT, this implies that electric-field eigenvalues `n are zero at all links. Furthermore, the fermionic
configuration in the strong-coupling vacuum is dictated by the sign of mass, taken to be positive
in this work. The lowest-energy configuration corresponds to the eigenvalue of the ⇠

†
n⇠n operator

being 0 (1) for no fermion (no antifermion) at even (odd) sites.
We consider periodic boundary conditions (PBCs) throughout this paper, i.e., we impose ⇠N =

⇠0. PBCs ensure a parity symmetry on states and allows for specifying well-defined momentum
quantum numbers, which is a key in constructing wave packets localized in momentum space [121].
Nonetheless, when PBCs are imposed, one is restricted to retain gauge-field degrees of freedom
in the simulation, i.e., Gauss’s laws are not su�cient to eliminate the electric-field configuration
throughout the lattice. Furthermore, PBCs in the U(1) LGT imply that the total number of
fermions must be equal to the total number of antifermions in the lattice for all states, since
each fermion (antifermion) lowers (raises) the electric field strength on the gauge link emanating
from its lattice site by one unit as seen from the Gauss’s law in Eq. (2). The strong-coupling
vacuum satisfies this condition as it has zero fermions and antifermions. Since the Hamiltonian in
Eq. (1) commutes with the total fermion-number operator Q =

P
N�1

n=0
⇠
†
n⇠n, all states that satisfy

PBCs must have the same Q eigenvalue as that of the strong-coupling vacuum, i.e., N/2. On the
other hand, the states in the Z2 LGT that satisfy PBCs have equal total number of fermions and
antifermions modulo two. Throughout this paper, we restrict to the subspace of states that have

Gauge bosons

Fermions
Hamiltonian:

6

such that Q̄n = 1 (�1) when a fermion (antifermion) is present at n, and Q̄n = 0 otherwise.
The system’s Hamiltonian H is given by

aH =
1

2

X

n2�

⇣
⇠
†
n�̃

x
n⇠n+a +H.c.

⌘
+ amf

X

n2�
(�1)n/a⇠†n⇠n + a✏

X

n2�
�̃
z
n, (5)

where mf � 0 is the fermion mass and ✏ is the strength of the electric-field Hamiltonian. Here,
⇠Na is identified with ⇠0 due to the PBC. From here onward, we set a = 1, hence quantities are
expressed in units of lattice spacing. The PBC yields lattice translational invariance and allows
for specifying well-defined momentum quantum numbers.

The Gauss’s law operator in Eq. (3) commutes with the Hamiltonian in Eq. (5). The
Hamiltonian also commutes with a global operator Q given by the total fermionic occupation
in the lattice:

Q =
N�1X

n=0

⇠
†
n⇠n. (6)

Following our previous work [107], we restrict this study to the subspace of the Hilbert space
spanned by states with Q = NP . A special state in this subspace, called the strong-coupling
vacuum (SCV), is the ground state of the Hamiltonian in the limit of mf , ✏� 1, and is given by

|⌦i
SCV

= |0, 1, · · · , 0, 1i ⌦ |s, s, · · · , s, si . (7)

Here, s = " (#) for ✏ < 0 (✏ > 0).
The gauge degrees of freedom in (1+1)D LGTs are not dynamical in nature, and are often

rotated away when open boundary condition (OBC) are in place. In this case, only the fermionic-
matter degrees of freedom survive but at the expense of yielding a non-local Hamiltonian. Such
an elimination of the gauge bosons is achieved by transforming the fermionic fields as

⇠n !  n =

 
n�1Y

i=0

�̃
x
i

!
⇠n, (8a)

⇠
†
n !  

†
n =

 
n�1Y

i=0

�̃
x
i

!
⇠
†
n. (8b)

With the PBC, the gauge degrees of freedom cannot be completely rotated away. However, they
are reduced to a single spin degree of freedom on one link, which can be seen by examining the
Hamiltonian in Eq. (5) under the field re-definitions in Eq. (8):

H =
1

2

N�2X

n=0

⇣
 
†
n n+1 +H.c.

⌘
+

1

2

⇣
 
†
N�1

e⌃x
 0 +H.c.

⌘
+mf

X

n2�
(�1)n †

n n + ✏

X

n2�

e⌃z
n. (9)

Here,

e⌃x :=
N�1Y

i=0

�̃
x
n , (10)

and the second term in Eq. (9) resulted from the PBCs. The electric-field operator e⌃z
n is evaluated

using the Gauss’s law in Eq. (2):

e⌃z
n
:= �̃

z
n = e

i⇡
P

n

m=0 Q̄m �̃
z
N�1, (11)
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(odd) lattice site. Three di↵erent states for a Z2 LGT with PBCs and 6 lattice sites are shown in (d). The
top picture represents the strong-coupling vacuum state, |⌦i0, while the middle (bottom) picture depicts
a forward-wrapped (backward-wrapped) 3-length bare-meson state created by the action of bare mesonic
operators, defined in Sec. II B, on |⌦i0.

LGT, this implies that electric-field eigenvalues `n are zero at all links. Furthermore, the fermionic
configuration in the strong-coupling vacuum is dictated by the sign of mass, taken to be positive
in this work. The lowest-energy configuration corresponds to the eigenvalue of the ⇠
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n⇠n operator

being 0 (1) for no fermion (no antifermion) at even (odd) sites.
We consider periodic boundary conditions (PBCs) throughout this paper, i.e., we impose ⇠N =

⇠0. PBCs ensure a parity symmetry on states and allows for specifying well-defined momentum
quantum numbers, which is a key in constructing wave packets localized in momentum space [121].
Nonetheless, when PBCs are imposed, one is restricted to retain gauge-field degrees of freedom
in the simulation, i.e., Gauss’s laws are not su�cient to eliminate the electric-field configuration
throughout the lattice. Furthermore, PBCs in the U(1) LGT imply that the total number of
fermions must be equal to the total number of antifermions in the lattice for all states, since
each fermion (antifermion) lowers (raises) the electric field strength on the gauge link emanating
from its lattice site by one unit as seen from the Gauss’s law in Eq. (2). The strong-coupling
vacuum satisfies this condition as it has zero fermions and antifermions. Since the Hamiltonian in
Eq. (1) commutes with the total fermion-number operator Q =

P
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n=0
⇠
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n⇠n, all states that satisfy

PBCs must have the same Q eigenvalue as that of the strong-coupling vacuum, i.e., N/2. On the
other hand, the states in the Z2 LGT that satisfy PBCs have equal total number of fermions and
antifermions modulo two. Throughout this paper, we restrict to the subspace of states that have
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are reduced to a single spin degree of freedom on one link, which can be seen by examining the
Hamiltonian in Eq. (5) under the field re-definitions in Eq. (8):

H =
1

2

N�2X

n=0

⇣
 
†
n n+1 +H.c.

⌘
+

1

2

⇣
 
†
N�1

e⌃x
 0 +H.c.

⌘
+mf

X

n2�
(�1)n †

n n + ✏

X

n2�

e⌃z
n. (9)

Here,

e⌃x :=
N�1Y

i=0

�̃
x
n , (10)

and the second term in Eq. (9) resulted from the PBCs. The electric-field operator e⌃z
n is evaluated

using the Gauss’s law in Eq. (2):

e⌃z
n
:= �̃

z
n = e

i⇡
P

n

m=0 Q̄m �̃
z
N�1, (11)
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II. AN ANSATZ FOR MESONIC WAVE PACKETS IN GAUGE THEORIES IN 1+1 D

The goal of this work is to demonstrate a suitable wave-packet preparation method for gauge
theories that exhibit confined excitations. To keep the presentation compact, we focus on the case
of Abelian LGTs in 1+1 D, and further specialize our study to the Z2 and U(1) LGTs coupled
to one flavor of staggered fermions. We will later comment on the modifications required in the
construction of the ansatz to make it suitable for non-Abelian groups such as in SU(2) and SU(3)
LGTs. This section briefly introduces the LGTs of this work, presents details of our mesonic
creation-operator ansatz, and demonstrates the validity of the proposed operator upon numerical
optimizations in small systems. This ansatz will form the basis of our quantum-circuit analysis
and implementation in the next section.

A. Models: Z2 and U(1) LGTs coupled to fermions in 1+1 D

The Hamiltonian of an Abelian LGT coupled to one flavor of staggered fermions in 1+1 D can
be written in the generic form:

H =
1

2

X

n2�

⇣
⇠
†

nUn⇠n+a + H.c.
⌘

+ amf

X

n2�

(�1)n/a⇠†n⇠n + a✏

X

n2�

f(En). (1)

Here, � =
�
0, a, · · · , (N � 1)a

 
is the set of lattice-site coordinates. a is the lattice spacing and N

denotes the number of staggered sites (and is hence even). ⇠†n (⇠n) stands for the fermionic creation
(annihilation) operator at site n. In the staggered formulation, first developed in Refs. [119, 120],
fermions (antifermions) live on the even (odd) sites of the lattice while the links host the gauge
bosons. Un and En are non-commuting conjugate operators representing the gauge-link and the
electric-field operators on the link emanating from site n. mf � 0 is the fermion mass and ✏ is the
strength of the electric-field Hamiltonian, expressed with the function f(En) for generality. For
example, in the case of the Z2 LGT, f(En) = En while in the U(1) case, f(En) = E

2
n. For the rest

of this paper, we set a = 1. The continuum limit is, therefore, realized in the limit of mf , ✏ ! 0.
Similarly, the specific form of the gauge-link and electric-field operators and their action on

their respective local bosonic Hilbert space depend on the gauge group. In the case of the Z2

LGT, the local Hilbert space in the electric-field basis is spanned by |si with s =", #, the two
spin projections of a spin-1

2
hardcore boson along the z axis, with U = |"i h#| + |#i h"| ⌘ �̃

x and
E = |"i h"| � |#i h#| ⌘ �̃

z. For the U(1) LGT, the local Hilbert space in the electric field basis is
the infinite-dimensional Hilbert space of a quantum rotor |`i with ` 2 Z, with U =

P
`
|`+ 1i h`|

and E =
P

`
` |`i h`|. For practical purposes, the ` quantum number is cut o↵ at a finite value

⇤ > 0, i.e., �⇤  `  ⇤, up to an uncertainty that can be systematically controlled. The degrees
of freedom and the action of the Hamiltonian terms in Eq. (1) are illustrated in Figs. 3 (a) and
(b) for the case of the Z2 LGT.

Only a portion of the Hilbert space spanned by the fermionic and bosonic basis states is phys-
ically relevant. This is because physical states of the theory must satisfy local Gauss’s laws,

Gn | physi = g | physi 8n, (2)

with a specific value of the eigenvalue g. For the Z2 LGT, Gn = EnEn�1e
�i⇡(⇠

†

n⇠n�
1�(�1)n

2 ) with

g = 1, while for the U(1) LGT, Gn = En � En�1 + ⇠
†
n⇠n �

1�(�1)
n

2
with g = 0. The Gauss’s law

satisfying configurations are shown for the case of the Z2 LGT in Fig. 3(c).
We will later build the interacting vacuum out of the strong-coupling vacuum, |⌦i

0
, which is

the ground state of Eq. (1) in the limit of ✏ � 1. The fermion hopping is suppressed in the strong-
coupling limit, and the lowest-energy configuration corresponds to the lowest-energy configuration
of the electric field on all links with no fermion or antifermion present. For the Z2 LGT, this
implies all link spins pointing up (down) in the z basis for ✏ < 0 (✏ > 0), while for the U(1)

Gauss’s law: with
<latexit sha1_base64="SwyHf4tTXrMufaYTYbVEaWq8KpA="></latexit>

Gn = �̃z�̃z
n�1e

i⇡
h
⇠†n⇠n�

1�(�1)n

2

i
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FIG. 3. The degrees of freedom in the Z2 LGT are shown in (a). A lattice site n (taken to be even in this
figure) and its neighboring lattice site n + 1 are denoted by circles, and the gauge link connecting them
is denoted by a line. A fermion (antifermion) at n (n + 1) is represented by an occupied (unoccupied)
lattice site, which is shown here by 1 (0) in a green circle, and the absence of a fermion (antifermion) at
n (n + 1) is shown by 0 (1) in a red circle. The corresponding fermion (antifermion) mass term in Eq. (1)
is written above the lattice site n (n + 1). The spin- 12 hardcore boson residing on the link is indicated by
a blue arrow along with its electric-field Hamiltonian term given in Eq. (1). For ✏ < 0 which is used in
the simulations of this work and assumed in the figure, the down spin (green link) has higher electric-field
energy than the up spin (red link). The action of the operator ⇠

†
n�̃

x
n⇠n+1, which is a part of the fermion

hopping Hamiltonian in Eq. (1) for a Z2 LGT, is depicted in (b). The upper (lower) dotted box in (c)
shows configurations that satisfy the Gauss’s law given in Eq. (2) for the case of the Z2 LGT at an even
(odd) lattice site. Three di↵erent states for a Z2 LGT with PBCs and 6 lattice sites are shown in (d). The
top picture represents the strong-coupling vacuum state, |⌦i0, while the middle (bottom) picture depicts
a forward-wrapped (backward-wrapped) 3-length bare-meson state created by the action of bare mesonic
operators, defined in Sec. II B, on |⌦i0.

LGT, this implies that electric-field eigenvalues `n are zero at all links. Furthermore, the fermionic
configuration in the strong-coupling vacuum is dictated by the sign of mass, taken to be positive
in this work. The lowest-energy configuration corresponds to the eigenvalue of the ⇠

†
n⇠n operator

being 0 (1) for no fermion (no antifermion) at even (odd) sites.
We consider periodic boundary conditions (PBCs) throughout this paper, i.e., we impose ⇠N =

⇠0. PBCs ensure a parity symmetry on states and allows for specifying well-defined momentum
quantum numbers, which is a key in constructing wave packets localized in momentum space [121].
Nonetheless, when PBCs are imposed, one is restricted to retain gauge-field degrees of freedom
in the simulation, i.e., Gauss’s laws are not su�cient to eliminate the electric-field configuration
throughout the lattice. Furthermore, PBCs in the U(1) LGT imply that the total number of
fermions must be equal to the total number of antifermions in the lattice for all states, since
each fermion (antifermion) lowers (raises) the electric field strength on the gauge link emanating
from its lattice site by one unit as seen from the Gauss’s law in Eq. (2). The strong-coupling
vacuum satisfies this condition as it has zero fermions and antifermions. Since the Hamiltonian in
Eq. (1) commutes with the total fermion-number operator Q =

P
N�1

n=0
⇠
†
n⇠n, all states that satisfy

PBCs must have the same Q eigenvalue as that of the strong-coupling vacuum, i.e., N/2. On the
other hand, the states in the Z2 LGT that satisfy PBCs have equal total number of fermions and
antifermions modulo two. Throughout this paper, we restrict to the subspace of states that have
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fermion hopping term between m and n if the meson does not contain the remnant gauge link,
otherwise, the fermion hopping term includes an additional e⌃x operator defined in Eq. (10) (whose
action reduces to �̃

x
N�1

on the bosonic Hilbert space in the MGF). A summary of Mm,n definitions
in both EGF and MGF is given in Table I, along with their mappings to the qubit space in the
MGF after the Jordan-Wigner transformations in Eq. (15).

In this confined theory, it is expected that the operators which have a support over an extent
much greater than the confinement scale will be suppressed exponentially. Motivated by this
intuition, we introduce an ansatz for b

†
k
that can be improved order by order, and takes the

following form:

b
†
k
=

1

N

N�1X

j=0

⌘
(j)

k
. (20)

Here, N is a normalization factor that will be discussed later. The superscript j denotes the
j
th order at which only the bare-meson creation operators with length less than or equal to j

contribute. The expression for ⌘(j)
k

is given by

⌘
(j)

k
=

X

m,n2�(j)
0

e
�↵

(j),k
0 |m�n|2

C
k

m,nMm,n +
X

m,n2�(j)
1

e
�↵

(j),k
1 |m�n|2

C
k

m,nMm,n, (21)

where �(j)

i
= {m,n 2 � || |m�n| = j and m mod 2 = i}. Here, |m� n| is taken to be the shortest

distance between m and n on a periodic lattice. C
k

m,n are kinematical factors given by

C
k

m,n =
X

p,q2e�

�k,p+qC (p,m)D(q, n), (22)

with the momentum sums in p and q running over the Brillouin zone of the staggered lattice, e�,
and

C (p,m) =

s
mf + !p

2⇡!p

e
ipm (Pm,0 + vpPm,1) , (23a)

D(q, n) =

s
mf + !q

2⇡!q

e
iqn (�vqPn,0 + Pn,1) , (23b)

which are obtained by solving for the plane-wave solutions in the free fermion theory on a staggered

lattice [50]. Here, !k =
q
m

2

f
+ sin2(k) and vk = sin(k)

mf+!k

. Moreover, Pn,0(1) =
1+(�1)

n+0(1)

2
is the

projection operator to the even (odd) staggered sites. One can rewrite Eq. (21) using Eqs. (22)
and (23) in terms of

P
m,n2� C (p,m)D(q, n)Mm,n. The ansatz is, therefore, built in such a way to

impart momentum p and q to the m and n end of the bare-meson creation operator Mm,n. The
Kronecker delta �k,p+q then ensures that the total momentum of the composite object is the desired

momentum k. Finally, the exponential factors e
�↵

(j),k
0/1 |m�n|2

control the strength of contribution of
each bare-meson creation operator according to their lengths, motivated by the discussions above.

At any given order j, the operator b†
k
can be approximated by b

(j)†
k

, which using Eqs. (20)-(23)
has the form:

b
(j)†
k

=
jX

j0=0

X

m,n2�(j0)

C
(j

0
),k

m,n Mm,n, (24)

Γ( j)
0 Γ( j)

1

n = 0 1 2 3 4 5
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.

j = 1

j = 2

Single-particle -momentum 
meson creation operator:


k

Coefficients such that short 
bare mesons are favored:

Bare meson 
operators
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where �(j) = �(j)
0

[ �(j)
1

and

C
(j),k

m,n =
1

N
e
�↵

(j),k
i

|m�n|2
C

k

m,n for m,n 2 �(j)
i

. (25)

We choose the normalization constant N at each order j such that
P

m,n2�(j) |C
(j),k

m,n |
2 = 1.

For a given k, there are two parameters to be optimized at each order j, ↵(j),k

0
and ↵

(j),k

1
. Given

the natural hierarchy of operators based on their lengths, the order-by-order optimization scheme

spares one from optimizing all the ↵(j),k

0/1
parameters simultaneously. One can start the optimization

process with j = 1 that restricts the ansatz to length-1 bare-meson creation operators.3 A

variational minimization algorithm can then be run for parameters ↵
(1),k

0/1
to obtain ↵

(1),k

0/1

⇤
that

minimizes the energy of the state b
(1)†
k

|⌦i. To improve the overlaps with the true lowest-energy
state with a momentum k, one can then choose to go to the next order in j and repeat the variational

minimization process on ↵
(1),k

0/1
and ↵

(2),k

0/1
. Nonetheless, the parameter space can be restricted to

a narrow region around the optimized ↵
(1),k

0/1

⇤
from the previous order of optimization to ease the

next optimization. The process is iterated for progressively larger j values, while restricting the

parameter space for ↵(`),k

0/1
with ` < j to a narrow range near the already optimized values ↵(`),k

0/1

⇤
.

One can then expect to obtain the form of b†
k
that is very close to the true momentum creation

operator of the interacting theory, which excites the |ki state when acted on the interacting vacuum
|⌦i.

Once the ansatzes for operators b†
k
are optimized to reach a target accuracy, the list of optimized

↵
(`),k

0/1

⇤
can be used in Eqs. (18) and (19) to define an operator b†

 
. This operator creates the desired

wave-packet state | i from the interacting vacuum:

| i =

0

@
X

k2e�

 (k)b†
k

1

A |⌦i ⌘ b
†
 
|⌦i . (26)

Furthermore, using the ansatzes for b†
k
from Eq. (20) and the Jordan-Wigner transformed definitions

of Mm,n, denoted by fMm,n in Table I, the operator b†
 
can be approximated by the operator b(j)†

 

built of b(j)†
k

operators:

b
(j)†
 

=
jX

j0=0

X

m,n2�(j0)
C

(j
0
)

m,n
fMm,n, (27)

where

C
(j)

m,n =
X

k2�̃

 (k)C(j),k

m,n . (28)

Thus, the coe�cients C
(j)

m,n depend on the optimized parameters ↵
(`),k

0/1

⇤
, the kinematic factors C

and D defined in Eqs. (23), and the wave-packet profile  (k). This form of b(j)†
 

⇡ b
†
 
will be used

in Sec. IV for preparing the initial scattering state.

3 Note that, ↵(j=0),k
0/1 do not enter the optimization process since the ansatz does not depend on them when m = n.
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FIG. 11. The parameter scan for the 26-site (1+1)D Z2 LGT demonstrates the performance of the ansatz
at a large system size. The infidelity 1�F is shown for non-negative momenta in the Brillouin zone in each
columns (on a logarithmic scale). Results using the j

th-order ansatz is shown in the j
th row. In general,

the ansatz performs better in the strong-coupling regime, which agrees with the results in a smaller system
in Sec. II C. F > 0.99 is achieved at the 3rd order except for |k = 6⇡

13 i with mf = 0.1, 0.3 and ✏ = �0.1. At
these couplings, there are other excited states (above the single-particle state) not belonging to the k = 6⇡

13
sector but with energies very similar to that of |k = 6⇡

13 i, reducing the e↵ectiveness of the MPS ansatz to
discern excited states reliably. The MPS states with these coupling are thus less reliable for the fidelity test,
and the corresponding parameter range is hashed in the figure.

successively using the same DMRG process upon constraining the output to be orthogonal to the
ground state and all other excited states with lower energy, if any. The MPS states are further
constrained such that the total fermionic excitation remains in the Q = NP sector, and thus the
gauge symmetry is guaranteed on a periodic lattice. All DMRG calculations in this work are carried
out using the ITensors library [205].

The DMRG calculations for the ground state and the 13 excited states with the lowest energy in
each momentum sector are performed for a range of (mf , ✏) values. In each DMRG optimization,
the maximum allowed bond dimension is set to 600, and the Schmidt coe�cients under 10�12 are
truncated. The number of sweeps is set to O(100) to ensure convergence in energy. To further
verify the quality of an output DMRG state | i

MPS
, the variance of energy is calculated:

Var := MPSh |H
2
| iMPS � (MPSh |H| iMPS)

2

(MPSh |H| iMPS)
2

. (A1)

If | i
MPS

is exactly an eigenstate of H, the variance should be zero. For all pairs (mf , ✏), the
DMRG parameters listed above can achieve Var = O(10�10).

Similar to Sec. II C, the fidelity between the order-by-order ansatz states |ki
op

and the DMRG
states |ki

MPS
, now assumed to approximate the exact eigenstates with very high accuracy, is

presented for each k value belonging to the Brillouin zone. However, one caveat is that the DMRG
momentum states |ki

MPS
for k 6= 0 are not accessible due to the energy degeneracy between
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FIG. 2. Shown is the circuit used in this work for simulating scattering in a (1+1)D Z2 LGT in the MGF.
The circuit acts on N + 1 system qubits representing the lattice associated with N staggered sites, and
one or more ancilla qubits denoted by a1,2,t. The system qubits are initialized in the SCV state |⌦iSCV, as
shown by the first vertical dotted line, while each ancilla starts in the |0i state. The circuit consists of three
subcircuit modules. The vertical dotted lines indicate the state of the system qubits after the application
of each module. The first module prepares the ground state, |⌦i, of the Hamiltonian in Eq. (16) using the
circuit block QGS with parameters ✓

h⇤ and ✓
m⇤. The second module prepares the initial scattering state

composed of two well-separated input wave packets, resulting in the state | 1, 2i. It requires at least one
ancilla qubit to prepare the initial state, shown here with a black solid line. Alternatively, it can also be
applied using an extra ancilla qubits, shown with a dotted black line, to improve the accuracy of preparing
the target state, as explained in the text. Finally, the last module, QTrott, performs the unitary time
evolution U(t) = e

�itH under the Hamiltonian H in Eq. (16). The circuit components in red are to perform
a Hadamard test to compute the return probability of the initial state as a function of time; they can be
omitted when measuring only the expectation values of diagonal operators. The Hadamard test requires an
additional ancilla and a controlled application of QTrott with control on the ancilla. Here, H denotes the
Hadamard gate and R

x(✓) := e
� i

2 ✓�
x
. To compute the return probability, as shown in Appendix D, one

needs to separately implement either the R
x(⇡4 ) or the H gate as the last operation on the at ancilla, which

is denoted in the circuit by R
x(⇡4 )/H. Details of each module and their constituent circuits are discussed in

Sec. III.

For the remainder of the main text, to reduce the clutter, we drop the superscript (j) from
quantities, since the order at which they are assumed will be clear from the context.

III. QUANTUM ALGORITHM AND CIRCUIT DESIGN

In this section, we use the Hamiltonian and the ansatz for hadron states defined in Sec. II to
lay out a digital quantum algorithm for performing multi-hadron scattering. We choose to work
with the MGF for a more e�cient circuit implementation.

The overall protocol used in this work starts from the SCV state |⌦i
SCV

in Eq. (14), which is
one of the computational basis states. The protocol is composed of three circuit modules:

1. QGS prepares the interacting vacuum |⌦i from |⌦i
SCV

.

2. QInit constructs the initial scattering state comprised of well-separated wave packets.

3. QTrott performs the Trotterized time evolution under the Hamiltonian in Eq. (16).

These three modules are depicted in Fig. 2, with each module separated by a dotted line, indicating
the corresponding quantum state prepared at the end of each stage. Each circuit module will be

OUR QUANTUM CIRCUIT FOR HADRON SCATTERING
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FIG. 6. Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2) circuit, plotted
against their corresponding lattice-site index n for (a)NP = 5 and (b)NP = 13. The wave-packet parameters
for the Gaussian wavefunctions  1(k) and  2(k) are given in Table II. Together with the optimized ansatz
parameters given in Table VI and VII, they determine the coe�cients Cm,n with |m � n|  1. The real
(imaginary) parts of Cn,n coe�cients, up to a proportionality constant, are shown in filled (unfilled) circles.
Similarly, the magnitude of forward (backward) 1-meson coe�cients Cn,n+1 (Cn�1,n), up to a proportionality
constant, are shown in filled (unfilled) stars. The proportionality constants arise from the second-order
Trotter expansion used to implement Eq. (34) with one Trotter step. Two di↵erent colors are used for each
wavefunction to denote the corresponding filled and unfilled markers for better visual di↵erentiability. The
color used for filled (unfilled) marker is depicted as the color of the inner square (outer border) in the legend.
The green line shows the cuto↵ value ✓c = 0.1; all rotations angles that fall below this value are discarded
when when executing QInit( 1, 2) on the IonQ Forte quantum computer.

The magnitudes of the rotation angles corresponding to Appx II are plotted in Fig. 6. As is
observed from the plotted values, only four Cm,n values per wave packet contribute to rotation
angles with ✓ > ✓c = 0.1.5

We compare observables in the state | 1, 2i prepared with either of these approximations.
Two observables, diagonal in the computational basis, are studied. One is the staggered (fermion)
density,

�n =

(
h 

†
n ni if n 2 even,

1� h 
†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,

E = h�̃
z
i . (40)

The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.
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FIG. 7. Shown are the staggered density �n across lattice-site index n (left) and the electric field at the
boson qubit E (right) for the two-wave-packet scattering states, with the wave-packet parameters in Table II.
The results for the lattice sizes NP = 5 (top, 11 system qubits) and NP = 13 (bottom, 27 system qubits)
are compared against the ideal results, which are obtained by exact numerical solution (empty green circles)
and by using the MPS-ansatz states (solid green circles), respectively. The dashed green line is depicted for
visual guidance and is not a fit to data. Two approximations are implemented: Appx I (yellow stars) and
Appx II (red stars), both obtained using Aer noiseless simulator using 5⇥105 shots. Additionally, Appx II is
implemented on the IonQ Forte quantum computer (cyan triangles) with 1000 shots for each NP . The error
bars are obtained from bootstrap resampling of the global-symmetry-based noise-mitigated hardware results.
The ranges for the y-axes in all plots are taken to be over all possible values the corresponding observable
can take. The axis for E values is broken and rescaled appropriately to resolve the closely located data
points near its maximum allowed value.

the wave packets are acted on by gates with larger angles (i.e., larger |Cm,n| values as seen in
Fig. 6). Larger gate angles indicate longer gate-implementation times, making the gates more
susceptible to quantum decoherence. In summary, the ability to systematically control the various
levels of approximation allows us to compromise marginally on the accuracy of preparing the initial
scattering state while benefiting from significant reduction in quantum-resource requirements. This
is especially useful if the observable under investigation is local, and is, hence, robust against
extensive error accumulation under time evolution [134, 135]. We further investigate this point in
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FIG. 6. Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2) circuit, plotted
against their corresponding lattice-site index n for (a)NP = 5 and (b)NP = 13. The wave-packet parameters
for the Gaussian wavefunctions  1(k) and  2(k) are given in Table II. Together with the optimized ansatz
parameters given in Table VI and VII, they determine the coe�cients Cm,n with |m � n|  1. The real
(imaginary) parts of Cn,n coe�cients, up to a proportionality constant, are shown in filled (unfilled) circles.
Similarly, the magnitude of forward (backward) 1-meson coe�cients Cn,n+1 (Cn�1,n), up to a proportionality
constant, are shown in filled (unfilled) stars. The proportionality constants arise from the second-order
Trotter expansion used to implement Eq. (34) with one Trotter step. Two di↵erent colors are used for each
wavefunction to denote the corresponding filled and unfilled markers for better visual di↵erentiability. The
color used for filled (unfilled) marker is depicted as the color of the inner square (outer border) in the legend.
The green line shows the cuto↵ value ✓c = 0.1; all rotations angles that fall below this value are discarded
when when executing QInit( 1, 2) on the IonQ Forte quantum computer.

The magnitudes of the rotation angles corresponding to Appx II are plotted in Fig. 6. As is
observed from the plotted values, only four Cm,n values per wave packet contribute to rotation
angles with ✓ > ✓c = 0.1.5

We compare observables in the state | 1, 2i prepared with either of these approximations.
Two observables, diagonal in the computational basis, are studied. One is the staggered (fermion)
density,

�n =

(
h 

†
n ni if n 2 even,

1� h 
†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,

E = h�̃
z
i . (40)

The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.
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Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.
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FIG. 7. Shown are the staggered density �n across lattice-site index n (left) and the electric field at the
boson qubit E (right) for the two-wave-packet scattering states, with the wave-packet parameters in Table II.
The results for the lattice sizes NP = 5 (top, 11 system qubits) and NP = 13 (bottom, 27 system qubits)
are compared against the ideal results, which are obtained by exact numerical solution (empty green circles)
and by using the MPS-ansatz states (solid green circles), respectively. The dashed green line is depicted for
visual guidance and is not a fit to data. Two approximations are implemented: Appx I (yellow stars) and
Appx II (red stars), both obtained using Aer noiseless simulator using 5⇥105 shots. Additionally, Appx II is
implemented on the IonQ Forte quantum computer (cyan triangles) with 1000 shots for each NP . The error
bars are obtained from bootstrap resampling of the global-symmetry-based noise-mitigated hardware results.
The ranges for the y-axes in all plots are taken to be over all possible values the corresponding observable
can take. The axis for E values is broken and rescaled appropriately to resolve the closely located data
points near its maximum allowed value.

the wave packets are acted on by gates with larger angles (i.e., larger |Cm,n| values as seen in
Fig. 6). Larger gate angles indicate longer gate-implementation times, making the gates more
susceptible to quantum decoherence. In summary, the ability to systematically control the various
levels of approximation allows us to compromise marginally on the accuracy of preparing the initial
scattering state while benefiting from significant reduction in quantum-resource requirements. This
is especially useful if the observable under investigation is local, and is, hence, robust against
extensive error accumulation under time evolution [134, 135]. We further investigate this point in
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The magnitudes of the rotation angles corresponding to Appx II are plotted in Fig. 6. As is
observed from the plotted values, only four Cm,n values per wave packet contribute to rotation
angles with ✓ > ✓c = 0.1.5

We compare observables in the state | 1, 2i prepared with either of these approximations.
Two observables, diagonal in the computational basis, are studied. One is the staggered (fermion)
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and the other is the electric-field value at the qubit encoding the hardcore boson,
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The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.
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NP Appx Qubits
Single-qubit gates
(raw/transpiled)

CNOT gates
(raw/transpiled) /a

5
I 13 12757/13343 11324/7315 13.25%

II 12 310/369 236/167 6.96%

13
I 29 6925/7660 5948/3934 11.08%

II 28 494/572 300/197 6.07%

TABLE III. Shown are the number of qubits, single-qubit gates, and CNOT gates required for preparing
the initial scattering state | 1, 2i in Fig. 2 with the wave-packet parameters in Table II. The raw gate
counts can be obtained from the circuits described in the main text, while the transpiled gate counts are
obtained with the Qiskit transpiler. (Version 1.1.1 was used for Appx I while version 1.0.2 was used for
Appx II.) The two approximations, Appx I and Appx II, yield di↵erent accuracy as described in Sec IVB.
Only circuits for Appx II were implemented on the IonQ Forte quantum computer. Finally, the last column
denotes the ancilla-violation error /a, calculated using the noiseless Aer simulator (with 5⇥ 105 shots).

They are compared against the ideal results obtained from exact numerical results (for NP = 5) and
using an MPS ansatz for the states (for NP = 13). The Appx I results are in better agreement with
the ideal results. Appx II results, nonetheless, are not far o↵. Adopting Appx II, therefore, is not
unreasonable especially since its required resources are significantly lower than Appx I. These results
are obtained by discarding measurements for which the ancilla qubit(s) do not have the correct
value(s) |1a1 , 1a2i for Appx I and |1a1i for Appx II. The percentage of discarded measurements are
shown in Table III under the column /a, the ancilla-violation error. More states are discarded in
Appx I than Appx II, since a part of the erroneous states are hidden in the valid ancilla values in
Appx II, see discussions in Sec. III B.

The two-wave-packet preparation circuits within Appx II were executed on the IonQ Forte

quantum computer, with 1000 shots per circuit. The �n and E values obtained from these runs are
shown in Fig. 7. The hardware results contain various errors that are sourced from the trapped-
ion quantum devices. Similar to Ref. [107], we employ a simple post-processing error-mitigation
scheme based on the global symmetry of the fermion-qubits configurations. Explicitly, we discard
the states from the final results that exhibit Q 6= NP . Such states indicate the occurrence of at
least one error in the fermion qubits. We refer to this error as the symmetry-violation error, and
denote it by /Q. We find /Q = 49.40% for NP = 5 and /Q = 71.20% for NP = 13. The states
in the set complementary to /Q are not necessarily contamination free, since the errors that do
not change Q are not filtered away. Part of these errors percolate into the ancilla-violation error:
/a = 14.82% for NP = 5 and /a = 18.40% for NP = 13. These are larger than their respective
noiseless-simulator results in Table III, due to additional hardware errors. The error /a is calculated
over the shots remained after discarding those with a /Q error. States with the incorrect values
of ancilla measurement are also discarded before evaluating the observables’ expectation-values.
Finally, the error bars in Fig. 7 are obtained from the standard deviation of the mean of the
bootstrap samples of the physical events with 100 resampled configurations (at which value the
bootstrap-sample mean distributions is stabilized).

The hardware results are in a good agreement with their noiseless-simulator counterparts for
both observables. The deviation from noiseless simulator is generally more prominent at the center
of the wave packet. This feature can be attributed to the fact that the qubits at the center of
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and the other is the electric-field value at the qubit encoding the hardcore boson,
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The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.
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FIG. 7. Shown are the staggered density �n across lattice-site index n (left) and the electric field at the
boson qubit E (right) for the two-wave-packet scattering states, with the wave-packet parameters in Table II.
The results for the lattice sizes NP = 5 (top, 11 system qubits) and NP = 13 (bottom, 27 system qubits)
are compared against the ideal results, which are obtained by exact numerical solution (empty green circles)
and by using the MPS-ansatz states (solid green circles), respectively. The dashed green line is depicted for
visual guidance and is not a fit to data. Two approximations are implemented: Appx I (yellow stars) and
Appx II (red stars), both obtained using Aer noiseless simulator using 5⇥105 shots. Additionally, Appx II is
implemented on the IonQ Forte quantum computer (cyan triangles) with 1000 shots for each NP . The error
bars are obtained from bootstrap resampling of the global-symmetry-based noise-mitigated hardware results.
The ranges for the y-axes in all plots are taken to be over all possible values the corresponding observable
can take. The axis for E values is broken and rescaled appropriately to resolve the closely located data
points near its maximum allowed value.

the wave packets are acted on by gates with larger angles (i.e., larger |Cm,n| values as seen in
Fig. 6). Larger gate angles indicate longer gate-implementation times, making the gates more
susceptible to quantum decoherence. In summary, the ability to systematically control the various
levels of approximation allows us to compromise marginally on the accuracy of preparing the initial
scattering state while benefiting from significant reduction in quantum-resource requirements. This
is especially useful if the observable under investigation is local, and is, hence, robust against
extensive error accumulation under time evolution [134, 135]. We further investigate this point in
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FIG. 6. Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2) circuit, plotted
against their corresponding lattice-site index n for (a)NP = 5 and (b)NP = 13. The wave-packet parameters
for the Gaussian wavefunctions  1(k) and  2(k) are given in Table II. Together with the optimized ansatz
parameters given in Table VI and VII, they determine the coe�cients Cm,n with |m � n|  1. The real
(imaginary) parts of Cn,n coe�cients, up to a proportionality constant, are shown in filled (unfilled) circles.
Similarly, the magnitude of forward (backward) 1-meson coe�cients Cn,n+1 (Cn�1,n), up to a proportionality
constant, are shown in filled (unfilled) stars. The proportionality constants arise from the second-order
Trotter expansion used to implement Eq. (34) with one Trotter step. Two di↵erent colors are used for each
wavefunction to denote the corresponding filled and unfilled markers for better visual di↵erentiability. The
color used for filled (unfilled) marker is depicted as the color of the inner square (outer border) in the legend.
The green line shows the cuto↵ value ✓c = 0.1; all rotations angles that fall below this value are discarded
when when executing QInit( 1, 2) on the IonQ Forte quantum computer.

The magnitudes of the rotation angles corresponding to Appx II are plotted in Fig. 6. As is
observed from the plotted values, only four Cm,n values per wave packet contribute to rotation
angles with ✓ > ✓c = 0.1.5

We compare observables in the state | 1, 2i prepared with either of these approximations.
Two observables, diagonal in the computational basis, are studied. One is the staggered (fermion)
density,

�n =

(
h 

†
n ni if n 2 even,

1� h 
†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,

E = h�̃
z
i . (40)

The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.
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FIG. 7. Shown are the staggered density �n across lattice-site index n (left) and the electric field at the
boson qubit E (right) for the two-wave-packet scattering states, with the wave-packet parameters in Table II.
The results for the lattice sizes NP = 5 (top, 11 system qubits) and NP = 13 (bottom, 27 system qubits)
are compared against the ideal results, which are obtained by exact numerical solution (empty green circles)
and by using the MPS-ansatz states (solid green circles), respectively. The dashed green line is depicted for
visual guidance and is not a fit to data. Two approximations are implemented: Appx I (yellow stars) and
Appx II (red stars), both obtained using Aer noiseless simulator using 5⇥105 shots. Additionally, Appx II is
implemented on the IonQ Forte quantum computer (cyan triangles) with 1000 shots for each NP . The error
bars are obtained from bootstrap resampling of the global-symmetry-based noise-mitigated hardware results.
The ranges for the y-axes in all plots are taken to be over all possible values the corresponding observable
can take. The axis for E values is broken and rescaled appropriately to resolve the closely located data
points near its maximum allowed value.

the wave packets are acted on by gates with larger angles (i.e., larger |Cm,n| values as seen in
Fig. 6). Larger gate angles indicate longer gate-implementation times, making the gates more
susceptible to quantum decoherence. In summary, the ability to systematically control the various
levels of approximation allows us to compromise marginally on the accuracy of preparing the initial
scattering state while benefiting from significant reduction in quantum-resource requirements. This
is especially useful if the observable under investigation is local, and is, hence, robust against
extensive error accumulation under time evolution [134, 135]. We further investigate this point in
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NP Appx Qubits
Single-qubit gates
(raw/transpiled)

CNOT gates
(raw/transpiled) /a

5
I 13 12757/13343 11324/7315 13.25%

II 12 310/369 236/167 6.96%

13
I 29 6925/7660 5948/3934 11.08%

II 28 494/572 300/197 6.07%

TABLE III. Shown are the number of qubits, single-qubit gates, and CNOT gates required for preparing
the initial scattering state | 1, 2i in Fig. 2 with the wave-packet parameters in Table II. The raw gate
counts can be obtained from the circuits described in the main text, while the transpiled gate counts are
obtained with the Qiskit transpiler. (Version 1.1.1 was used for Appx I while version 1.0.2 was used for
Appx II.) The two approximations, Appx I and Appx II, yield di↵erent accuracy as described in Sec IVB.
Only circuits for Appx II were implemented on the IonQ Forte quantum computer. Finally, the last column
denotes the ancilla-violation error /a, calculated using the noiseless Aer simulator (with 5⇥ 105 shots).

They are compared against the ideal results obtained from exact numerical results (for NP = 5) and
using an MPS ansatz for the states (for NP = 13). The Appx I results are in better agreement with
the ideal results. Appx II results, nonetheless, are not far o↵. Adopting Appx II, therefore, is not
unreasonable especially since its required resources are significantly lower than Appx I. These results
are obtained by discarding measurements for which the ancilla qubit(s) do not have the correct
value(s) |1a1 , 1a2i for Appx I and |1a1i for Appx II. The percentage of discarded measurements are
shown in Table III under the column /a, the ancilla-violation error. More states are discarded in
Appx I than Appx II, since a part of the erroneous states are hidden in the valid ancilla values in
Appx II, see discussions in Sec. III B.

The two-wave-packet preparation circuits within Appx II were executed on the IonQ Forte

quantum computer, with 1000 shots per circuit. The �n and E values obtained from these runs are
shown in Fig. 7. The hardware results contain various errors that are sourced from the trapped-
ion quantum devices. Similar to Ref. [107], we employ a simple post-processing error-mitigation
scheme based on the global symmetry of the fermion-qubits configurations. Explicitly, we discard
the states from the final results that exhibit Q 6= NP . Such states indicate the occurrence of at
least one error in the fermion qubits. We refer to this error as the symmetry-violation error, and
denote it by /Q. We find /Q = 49.40% for NP = 5 and /Q = 71.20% for NP = 13. The states
in the set complementary to /Q are not necessarily contamination free, since the errors that do
not change Q are not filtered away. Part of these errors percolate into the ancilla-violation error:
/a = 14.82% for NP = 5 and /a = 18.40% for NP = 13. These are larger than their respective
noiseless-simulator results in Table III, due to additional hardware errors. The error /a is calculated
over the shots remained after discarding those with a /Q error. States with the incorrect values
of ancilla measurement are also discarded before evaluating the observables’ expectation-values.
Finally, the error bars in Fig. 7 are obtained from the standard deviation of the mean of the
bootstrap samples of the physical events with 100 resampled configurations (at which value the
bootstrap-sample mean distributions is stabilized).

The hardware results are in a good agreement with their noiseless-simulator counterparts for
both observables. The deviation from noiseless simulator is generally more prominent at the center
of the wave packet. This feature can be attributed to the fact that the qubits at the center of
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FIG. 8. Shown are the expectation values of the staggered density �n across lattice-site index n, in a
Trotterized time-evolved scattering state of two meson wave packets for NP = 5 with 11 system qubits.
Each column (row) shares the x-axis (y-axis) label. The plot legends and error bars are the same as in
Fig. 7. The exact results correspond to the evaluation of time-evolution unitary matrix U(t) = e

�itH

upon exact exponentiation of the Hamiltonian matrix for a given time t, acting on the corresponding initial
state in Fig. 7(a). The noiseless-simulator and hardware results correspond to 5 ⇥ 105 and 3000 shots,
respectively. The quantum circuits for the Trotter time evolution are taken with time steps of �t = 1. The
meshed squares for the t = 7 and t = 8 plots denote the hardware-noise-dominated results. The number of
single-qubit and CNOT gates implemented for the combined state-preparation and time-evolution circuits
for each t is provided in Table IV.
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FIG. 6. Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2) circuit, plotted
against their corresponding lattice-site index n for (a)NP = 5 and (b)NP = 13. The wave-packet parameters
for the Gaussian wavefunctions  1(k) and  2(k) are given in Table II. Together with the optimized ansatz
parameters given in Table VI and VII, they determine the coe�cients Cm,n with |m � n|  1. The real
(imaginary) parts of Cn,n coe�cients, up to a proportionality constant, are shown in filled (unfilled) circles.
Similarly, the magnitude of forward (backward) 1-meson coe�cients Cn,n+1 (Cn�1,n), up to a proportionality
constant, are shown in filled (unfilled) stars. The proportionality constants arise from the second-order
Trotter expansion used to implement Eq. (34) with one Trotter step. Two di↵erent colors are used for each
wavefunction to denote the corresponding filled and unfilled markers for better visual di↵erentiability. The
color used for filled (unfilled) marker is depicted as the color of the inner square (outer border) in the legend.
The green line shows the cuto↵ value ✓c = 0.1; all rotations angles that fall below this value are discarded
when when executing QInit( 1, 2) on the IonQ Forte quantum computer.

The magnitudes of the rotation angles corresponding to Appx II are plotted in Fig. 6. As is
observed from the plotted values, only four Cm,n values per wave packet contribute to rotation
angles with ✓ > ✓c = 0.1.5

We compare observables in the state | 1, 2i prepared with either of these approximations.
Two observables, diagonal in the computational basis, are studied. One is the staggered (fermion)
density,

�n =

(
h 

†
n ni if n 2 even,

1� h 
†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,

E = h�̃
z
i . (40)

The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.
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FIG. 8. Shown are the expectation values of the staggered density �n across lattice-site index n, in a
Trotterized time-evolved scattering state of two meson wave packets for NP = 5 with 11 system qubits.
Each column (row) shares the x-axis (y-axis) label. The plot legends and error bars are the same as in
Fig. 7. The exact results correspond to the evaluation of time-evolution unitary matrix U(t) = e

�itH

upon exact exponentiation of the Hamiltonian matrix for a given time t, acting on the corresponding initial
state in Fig. 7(a). The noiseless-simulator and hardware results correspond to 5 ⇥ 105 and 3000 shots,
respectively. The quantum circuits for the Trotter time evolution are taken with time steps of �t = 1. The
meshed squares for the t = 7 and t = 8 plots denote the hardware-noise-dominated results. The number of
single-qubit and CNOT gates implemented for the combined state-preparation and time-evolution circuits
for each t is provided in Table IV.
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t 1 2 3 4 5 6 7 8

Single-qubit gates 573 771 969 1167 1365 1563 1761 1959

CNOT gates 227 287 347 407 467 527 587 647

/Q 56.07% 62.43% 67.13% 70.77% 71.73% 73.47% 73.63% 76.73%

/a 15.78% 17.66% 16.02% 19.61% 18.28% 19.47% 20.61% 20.77%

TABLE IV. Shown are the values of the single- and two-qubit gate counts, symmetry-violation error /Q,
and the ancilla-violation error /a, for di↵erent Trotter steps t in time evolution of two meson wave packets,
resulted from the IonQ Forte device. The gate counts are associated with the transpiled quantum circuit
by the Qiskit transpiler. (The raw gate counts can be obtained from those provided in Table III for the
state preparation and the cost of each Trotter step of evolution given in the text.)

Secs. IVC and IVD by studying di↵erent observables under time evolution.
Finally, our method can be extended to prepare multiple spatially spaced wave packets. One

can repeat the application of QWP( i) with one or more ancilla qubits as many times as needed.
We have demonstrated the preparation of three wave packets in an NP = 13 system on the IonQ

Forte, see Appendix C, observing good agreement with the expected results.

C. Time-evolved observables

We use the circuit for Trotterized time evolution via a second-order Trotter product formula
shown in Sec. III C to evolve an initial two-wave-packet state on an IonQ Forte quantum computer.
The NP = 5 parameters in Table II are chosen for this purpose since each Trotter time step involves
a shallower circuit than the larger-system counterpart: each Trotter-step circuit block constitutes
204 single-qubit gates and 60 CNOT gates. The three modules in Fig. 2 are implemented with
Appx II for 3000 shots and �t = 1. The number of shots and the size of the Trotter step required
to match the theoretical prediction are estimated using the noisy emulator provided for this device
by IonQ.6

The device results are analyzed using the methods described in the previous subsection, and
the /Q and /a values calculated for each Trotter step are shown in Table IV. The growing /Q and /a

errors with each Trotter step indicate increasing noise in the device results with deeper circuits. As
mentioned before, the /a error in the noiseless simulation denotes the systematic error due to the

approximate nature of b†
k
operators. In this case, this error does not change with time evolution

as the ancilla qubit used for the initial-state preparation does not participate in the time-evolution
circuit. Thus, the increasing /a error with each Trotter step in Table IV purely reflects the increasing
hardware error.

The results for the time-evolved staggered density are shown in the Fig. 8. The values obtained
from the quantum circuits are compared against the exact calculations that do not exhibit the
Trotter error (i.e., they are obtained by calculating U(t) using exact matrix exponentiation). From
these results, the wave packets can be seen to be moving towards each other with their peak

6 For future simulations involving large system sizes, a viable strategy is to repeat experiment for a range of Trotter-
step sizes and shot numbers to reach convergence in measured observables.

N = 10
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FIG. 9. Shown are the expectation values of the electric field E at the boson qubit, in a Trotterized time-
evolved scattering state of two wave packets for NP = 5 with 11 system qubits. The hardware results (cyan
triangles) are dominated by noise. Results obtained using the IonQ Forte noisy emulator are shown in
Appendix F to demonstrate a possible recovery of the signal using additional noise-mitigation tools, such
as Pauli twirling and operator decoherence renormalization, at the cost of additional quantum-processing
time.

values decreasing with time. The noiseless results (using 5 ⇥ 105 shots) in both approximations
(Appxs I and II) follow the exact wave-packet profile in the early times, but deviate from the
exact values with increasing evolution time due to accumulated Trotter error. In fact, in some
instances, the cruder, hence less resource-intensive, Appx II displays less Trotter error than Appx
II. This observation makes it clear that small deviations in the initial states may be insignificant in
subsequent simulation steps given the e↵ect of other errors during the evolution. Nonetheless, the
shape of the profile for both initial-state approximations resembles the exact wave-packet evolution,
and still o↵ers qualitative description of the physical process.

The hardware results also show the qualitative features of time-evolved staggered density,
however, the device noise starts to dominate after Trotter time t = 6. Furthermore, our results are
obtained without performing any additional error-mitigation-circuit runs and only by discarding
the /a and /Q errors during post-processing. Nonetheless, we have checked that discarding the /a

and /Q data does not significantly improve the outcome, and only leads to reduced statistics, hence
larger shot noise. The reason can be attributed to the fact that most of symmetry-violated errors
are associated with a few (mostly one) bit-flip errors in primarily random locations in the qubit
register, whose e↵ect becomes insignificant when computing expectation value of local operators.
Our observation is consistent with the conclusions of Ref. [136], which finds that the e↵ect of
symmetry-based noise mitigation is both quantity dependent and time dependent.

We further compute the time evolution of the electric-field expectation value at the boson qubit,
E, as shown in Fig. 9. Here, the noiseless result agrees with the exact result up to Trotter errors,
and almost retains its value at t = 0 throughout the evolution. The reason is that flipping the
electric field at the boson qubit costs an energy proportional to the system size, see Eq. (17c).
The hardware result for this quantity, on the other hand, significantly deviates from the exact
value. Thus, obtaining the Trotter time evolution of E requires further noise-mitigation techniques.
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FIG. 16. Shown are the noise-mitigated result obtained from Pauli twirling followed by operator decoherence
renormalization (ODR) for the electric field at the boson qubit, E, after two-wave-packet state evolution for
time t in theNP system (compare with Fig. 9). The inverted magenta triangles are the results from the Pauli-
twirled U(t) circuits. The black crosses are the Pauli-twirled identity circuits, U(0), with similar structure as
U(t). Both of these results were obtained using the noisy emulator for the IonQ Forte quantum computer
using 3000 shots. The error bars obtained from 1000 bootstrap samples are smaller than the markers, and
thus, they are not shown here. The latter is used to scale the values associated with the inverted magenta
triangles to the ODR results, denoted here by blue stars, and the error bars are obtained through error
propagation. The results from the IonQ Forte device (cyan stars), which were calculated after removing /Q

and /a errors during post-processing, are also shown for comparison.

are shown in Fig. 15 at four di↵erent values of time, t 2 {1, 4, 6, 11}. These sample values of t are
chosen to compare �n when return probability for Appx II shows relatively large deviation from
its ideal result (exhibiting 15% to 30% relative errors). As is observed, this local observable shows
very small deviation from the ideal result for both Appxs I and II, confirming that local observables
are more robust to small di↵erences in initial states.

Appendix F: Pauli twirling and operator decoherence renormalization

In this appendix, we describe and implement a noise-mitigation strategy for obtaining the values
of E = h�̃

z
i under the Trotter time evolution. The results for this quantity are obtained from runs

on the IonQ Forte quantum computer using Appx II, and are displayed in cyan triangles in Fig. 9
and below in Fig. 16. These results clearly show significant error in this quantity. Even at t = 1,
the value deviates from the ideal result, and it quickly diverges further away from the ideal values
during the evolution. On the other hand, as was seen in in Fig. 7, there exists reasonable agreement
between hardware and simulator results for this quantity at t = 0 (i.e., after the wave-packets’
preparation). We, therefore, conjuncture that the error in the time-evolved observable results from
the larger number of entangling gates applied to the boson qubit compared to fermionic qubits,
see Fig. 5(b).

The desired result could be recovered, nonetheless, by executing a few additional noise-
mitigating circuits, as shown in Fig. 16, and described below:

Noise mitigation

HOW FAR CAN WE EVOLVE THE TWO WAVE PACKETS?
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FIG. 6. Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2) circuit, plotted
against their corresponding lattice-site index n for (a)NP = 5 and (b)NP = 13. The wave-packet parameters
for the Gaussian wavefunctions  1(k) and  2(k) are given in Table II. Together with the optimized ansatz
parameters given in Table VI and VII, they determine the coe�cients Cm,n with |m � n|  1. The real
(imaginary) parts of Cn,n coe�cients, up to a proportionality constant, are shown in filled (unfilled) circles.
Similarly, the magnitude of forward (backward) 1-meson coe�cients Cn,n+1 (Cn�1,n), up to a proportionality
constant, are shown in filled (unfilled) stars. The proportionality constants arise from the second-order
Trotter expansion used to implement Eq. (34) with one Trotter step. Two di↵erent colors are used for each
wavefunction to denote the corresponding filled and unfilled markers for better visual di↵erentiability. The
color used for filled (unfilled) marker is depicted as the color of the inner square (outer border) in the legend.
The green line shows the cuto↵ value ✓c = 0.1; all rotations angles that fall below this value are discarded
when when executing QInit( 1, 2) on the IonQ Forte quantum computer.

The magnitudes of the rotation angles corresponding to Appx II are plotted in Fig. 6. As is
observed from the plotted values, only four Cm,n values per wave packet contribute to rotation
angles with ✓ > ✓c = 0.1.5

We compare observables in the state | 1, 2i prepared with either of these approximations.
Two observables, diagonal in the computational basis, are studied. One is the staggered (fermion)
density,

�n =

(
h 

†
n ni if n 2 even,

1� h 
†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,

E = h�̃
z
i . (40)

The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.

* Turn the coherent error 
to incoherent error, then 
use a similar circuit with 
known solution to 
normalize the result of 
the target circuit. 

N = 10



28

FIG. 10. Shown is the return probability, R(t), of the initial two wave-packet state for NP = 13 (27 system
qubits) against time. The Trotter time step is �t = 0.25, but results for only integer times are plotted. The
MPS results are obtained using the TDVP algorithm, and the values for Appxs I and II cases are calculated
using the circuit for the Hadamard test.

We have demonstrated this in Appendix F using the IonQ Forte noisy emulator where Pauli
twirling [137], along with operator decoherence renormalization [86, 138, 139], are employed to
recover the time-evolved value of E.7

The hardware runs’ moderate coherence time, and time evolution’s large circuit depth, prohibit
accessing interesting long-time scattering dynamics in this hardware study. Another issue is the
small system size, leading to boundary a↵ects in the simulation outcome in the long-time limit. One
would, therefore, need to simulate evolution of wave packets in larger systems, but the associated
circuit depths would increase considerably. Nonetheless, the results presented here marks the first
hadron-scattering simulation on a quantum computer;8 it has pushed the limits of what is possible
for such an involved simulation problem on any quantum hardware to date.

D. Return probability

Computing the scattering S-matrix, which relates scattering states in early and late times, is
a critical observable in nuclear and high-energy physics. In this section, we compute the return
probability (also known as the survival probability and Loschmidt echo):

R(t) := |h 1, 2|U(t)| 1, 2i|
2
, (41)

which is a diagonal entry of the scattering S-matrix. Here, we restrict our discussion to the
computation of return probability for the initial state consisting of the two wave packets prepared
in Sec. IVB, rather than its phenomenological implications, or more interesting, but significantly
more involved, final-state-momentum-dependent overlaps.

7 We relied on the noisy emulator for this analysis because such mitigation techniques require more quantum
processing, and our access to the device was limited.

8 See also the parallel submission by Schuhmacher et al. in the same arXiv listing.
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FIG. 14. (a) Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2, 2) circuit,
plotted against their corresponding lattice-site index n for a system of NP = 13 physical sites, using Appx II
for the preparation circuit. The wave-packet parameters for the first two wave packets are listed in Table II.
The third wave packet is produced with µ3 = 13, �3 = 3⇡/13 and k̄3 = 2⇡/13 in Eq. (38). The optimized
ansatz parameters are provided in Table VII. For other details, see the caption of Fig. 6. (b) Shown are the
staggered density �n (left) and the electric field at the boson qubit E (right) for an initial state containing
three wave packets on a NP = 13 lattice. Only Appx II is used to execute the three-wave-packet version
of the QInit circuit. The Aer noiseless-simulator results corresponds to 5⇥ 105 shots while the IonQ Forte
quantum-computer results correspond to 2000 shots.

Appendix D: Hadamard test for calculating the return probability

Consider the amplitude

A(t) := h 1, 2|U(t)| 1, 2i . (D1)

The return probability R(t) is then given by

R(t) := |A(t)|2 = Re(A(t))2 + Im(A(t))2, (D2)
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We have demonstrated this in Appendix F using the IonQ Forte noisy emulator where Pauli
twirling [137], along with operator decoherence renormalization [86, 138, 139], are employed to
recover the time-evolved value of E.7

The hardware runs’ moderate coherence time, and time evolution’s large circuit depth, prohibit
accessing interesting long-time scattering dynamics in this hardware study. Another issue is the
small system size, leading to boundary a↵ects in the simulation outcome in the long-time limit. One
would, therefore, need to simulate evolution of wave packets in larger systems, but the associated
circuit depths would increase considerably. Nonetheless, the results presented here marks the first
hadron-scattering simulation on a quantum computer;8 it has pushed the limits of what is possible
for such an involved simulation problem on any quantum hardware to date.

D. Return probability

Computing the scattering S-matrix, which relates scattering states in early and late times, is
a critical observable in nuclear and high-energy physics. In this section, we compute the return
probability (also known as the survival probability and Loschmidt echo):

R(t) := |h 1, 2|U(t)| 1, 2i|
2
, (41)

which is a diagonal entry of the scattering S-matrix. Here, we restrict our discussion to the
computation of return probability for the initial state consisting of the two wave packets prepared
in Sec. IVB, rather than its phenomenological implications, or more interesting, but significantly
more involved, final-state-momentum-dependent overlaps.

7 We relied on the noisy emulator for this analysis because such mitigation techniques require more quantum
processing, and our access to the device was limited.

8 See also the parallel submission by Schuhmacher et al. in the same arXiv listing.
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FIG. 15. Shown are the staggered density �n corresponding to four instances of time during the evolution,
plotted against the lattice-site index n. The values of �n agree well with the ideal result for both Appxs
I and II. These are to be compared with the return-probability results plotted in Fig. 10, which exhibit a
significant deviation for Appx II.

The real (Re) and imaginary (Im) parts of A(t) can be computed using a standard Hadamard
test. The state | 1, 2i ⌦ |0ati is first acted with a Hadamard gate on the ancilla at, followed by
a controlled U(t) operation upon the |1i state of the ancilla. Finally, a Hadamard or an R

x(⇡
4
)

gate is acted on the ancilla to obtain the real or imaginary parts, respectively. Denote by p0 and
p1 the probability for the ancilla to be measured in state |0ati and |1ati, respectively. Then the
quantity p0 � p1 obtains the real or the imaginary part out of the respective circuits. The circuit
for controlled U(t) can be obtained by controlling each block in Fig. 5 upon the state of the ancilla

at every Trotter step. The controlled e
�i�tH

h

and e
�i�tH

m

circuits are given by controlling every
constituent gate, while the controlled e

�i�tH
✏

is obtained by replacing the R
z gates with their

controlled versions. This is because in the absence of the R
z gates in the circuit in Fig. 5(b), the

collective action of the entangling gates is an identity on the state of fermion and the boson qubits.

Appendix E: Time evolution of local observable for NP=13

In Fig. 10 of the main text, we presented the results for the return probability R(t) for an
NP = 13 system obtained from the MPS ansatz, as well as Appxs I and II using the noiseless
Aer emulator. We observed significant deviation in this non-local quantity for the cruder Appx
II, possibly due to large interference e↵ects. In this appendix, we consider time evolution of the
staggered density �n instead, to investigate if the same deviation is seen for a local quantity.

To enable this comparison, we set all the simulation parameters identical to those in Fig. 10,
i.e., Trotter time step �t = 0.25 with 5 ⇥ 105 shots for the noiseless emulator. The results for �n

WHAT ABOUT LOCAL QUANTITIES AT TIMES           DEVIATES? 
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FIG. 6. Shown are rotation angles for single-qubit gates appearing in the QInit( 1, 2) circuit, plotted
against their corresponding lattice-site index n for (a)NP = 5 and (b)NP = 13. The wave-packet parameters
for the Gaussian wavefunctions  1(k) and  2(k) are given in Table II. Together with the optimized ansatz
parameters given in Table VI and VII, they determine the coe�cients Cm,n with |m � n|  1. The real
(imaginary) parts of Cn,n coe�cients, up to a proportionality constant, are shown in filled (unfilled) circles.
Similarly, the magnitude of forward (backward) 1-meson coe�cients Cn,n+1 (Cn�1,n), up to a proportionality
constant, are shown in filled (unfilled) stars. The proportionality constants arise from the second-order
Trotter expansion used to implement Eq. (34) with one Trotter step. Two di↵erent colors are used for each
wavefunction to denote the corresponding filled and unfilled markers for better visual di↵erentiability. The
color used for filled (unfilled) marker is depicted as the color of the inner square (outer border) in the legend.
The green line shows the cuto↵ value ✓c = 0.1; all rotations angles that fall below this value are discarded
when when executing QInit( 1, 2) on the IonQ Forte quantum computer.

The magnitudes of the rotation angles corresponding to Appx II are plotted in Fig. 6. As is
observed from the plotted values, only four Cm,n values per wave packet contribute to rotation
angles with ✓ > ✓c = 0.1.5

We compare observables in the state | 1, 2i prepared with either of these approximations.
Two observables, diagonal in the computational basis, are studied. One is the staggered (fermion)
density,

�n =

(
h 

†
n ni if n 2 even,

1� h 
†
n ni if n 2 odd,

(39)

and the other is the electric-field value at the qubit encoding the hardcore boson,

E = h�̃
z
i . (40)

The quantum resources required to implement QInit( 1, 2) for the wave-packet parameters listed
in Table II are summarized in Table III considering both approximations.

Results for �n and E are displayed in Fig. 7. These computations are performed using the
noiseless Aer simulator using 5 ⇥ 105 shots (yielding negligible uncertainty from the shot noise).

5 As is seen from the figure, for the NP = 13 system, ✓c can be set to even smaller values without increasing the
number of Cm,n coe�cients contributing to the ✓ > ✓c set.
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Figure 1. Sketch of a scattering event: The collision of two incoming mesons with
internal quantum numbers `1, `2 generates a superposition of several possible outcomes,
labelled by the quantum numbers of outgoing mesons.

numerical simulations. Finally, in Sec. 4, we propose concrete protocols to prepare,
simulate and observe meson scattering with present-day quantum simulators (e.g.,
Rydberg-atom arrays). The appendices contain various additional details on the
discussion and computations in the main text. In Appendix A we report additional
details on gauge invariance and confinement in the model under consideration in the
main text. In Appendix B we prove the exact mapping of its dynamics in the gauge-
neutral sector onto those of the quantum Ising chain in a tilted magnetic field. In
Appendix C and Appendix D we provide more details on the exact solution of the two-
and four-fermion problem, i.e., on the spectra of mesons and their scattering amplitudes,
in the limit of large fermion mass. In Appendix E we derive the analytic expression of the
meson current, we discuss its physical meaning and we prove the associated continuity
equation. Finally, in Appendix F we summarize and discuss the effects of having a finite
fermion mass.

2. Confinement and mesons

Particle confinement is a non-perturbative phenomenon arising in certain gauge theories,
which consists in the absence of charged asymptotic states: all stable excitations of the
theory above the ground state are neutral bound states of fermionic charges [24]. In
the context of QCD, confinement underlies the fact that quarks can only be observed in
composite structures such as mesons and baryons. Despite the fundamental difference
between particle confinement in QCD in (3 + 1) dimensions and in lower-dimensional
models [19, 20], the emergent composite particles share some basic properties, making
the latter convenient settings to gain insights into difficult aspects of the theory. In this
work we will be concerned with (1 + 1)-dimensional LGTs of this kind.

For the sake of definiteness, we will focus on the Z2-LGT defined by the following
Hamiltonian [25, 26]:

H = m

X

j

c
†
jcj +

⌧

2

X

j

�
z
j+1/2 + w

X

j

(c†j � cj) �
x
j+1/2 (cj+1 + c

†
j+1). (1)
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Figure 4. Manipulation of mesonic wavepackets by inhomogeneous fields. (a) Time
evolution of the meson current density J(s, t) originating from a single spin flip (see
the main text) at s/2 = (j1 + j2)/2 = 10.5, in the inhomogeneous field profiles shown
in the inset, interpolating between ⌧L = 0.54, wL = 0.25 (left) and ⌧R = 1.2, wR = 0.8
(right). The slopes of the dashed and dashed-dotted lines correspond to the maximal
velocity of the ` = 1 meson in the left and right regions, respectively. (b-c) Mesonic
spectra in the left (b) and right (c) regions. The horizontal dashed lines indicate the
range of allowed energies; the vertical lines define the range of momenta k⇤±�k allowed
in the right region. (d) Momentum distribution of the transmitted meson wavepacket.

of moderately longer chains and a limited amount of post-selection. The numerical
simulation in Fig. 4-(a) illustrates the core idea: when w/⌧ . 1, a spatially localized
spin flip in the left region mostly excites the lowest (and fastest) meson ` = 1 at all
momenta; hence, a sharp spatial variation in the fields ⌧(j), w(j) (inset) determines a
corresponding change in the shape of mesonic bands [from that in panel (b) to that in
(c)]; energy conservation (horizontal dashed lines) selects a narrow momentum window
k
⇤
± �k (vertical dashed lines) for which rightward propagation is allowed. Panel (d)

shows that at time t = 50 the fraction of mesonic wavepacket filtered in the right region
is ⇡ 20% (the rest is reflected at the interface), and its momentum distribution has
support within the selected window. An analogous preparation can be made on the
opposite side of the chain for the desired incoming mesonic wavepacket from the right.
Similarly, inhomogeneous fields can be used to accelerate mesons.

Finally, detecting the scattering products iii) is conceptually simple, as the mesons
involved in the various possible outcomes of a collision have different velocities [cf. Fig.
1], so they can be resolved as spatially separate wavepackets. For implementations
based on Eq. (7), the particle density c

†
jcj in Eq. (1) maps to the domain-wall

density (1� �
z
j�1/2�

z
j+1/2)/2: Thus, it is sufficient to measure the magnetization profile

h�
z
j+1/2(tf )i in the final state [44, 45, 46, 16] to reconstruct the momenta of the mesons
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Figure 2. Probabilities of the various scattering channels (1, 3) ! (`01, `
0
2) as a function

of the incoming momenta, for w/⌧ = 0.6. The blue lines delimit the regions where
the inelastic channels (2, 2), (1, 2), (2, 1) are open. The probabilities of the channels
plotted in the five panels sum up to one with good precision [small deviations from
this value are shown in Fig. E1-(b)].

Figure 3. Mesonic wavepackets collision. (a) Spectra E`(k) of the lightest mesons
for the Z2-LGT in Eq. (1) with ⌧ = 1, w = 0.6 and m � ⌧ . The crosses indicate the
momenta and energies of the two mesons in the incoming (red) and outgoing (purple,
blue, green) states. (b-e) Probability density of the meson momenta p(k1, k2) (b,c) and
of the relative momentum p(k1 � k2) (d,e) at time t = 0 (b,d) and t = tf = 50 (c,e).
The dashed contours in panel (c) mark the regions p > 0.25.

the Fourier transform of  (s1, s2, r1, r2; t) with respect to the center-of-mass positions
s1,2. While the initial state shows a single density peak at (k0

1, k
0
2), the final state

gives three different density peaks, all lying on the line k1 + k2 = k
0
1 + k

0
2 mod ⇡,

Surace and Lerose, New J. Phys. 23, 062001 (2021).
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FIG. 1. Scattering of meson wave packets. (a) Kinks, which are neighboring pairs of anti-aligned spins, are depicted
as colored points. Kinks can be unbound, or form bound two-kink states separated by ` spins, called `-mesons. Here, an
unbound two-kink state is depicted as two isolated points and a 1-meson is depicted as colored points joined by a spring.
(b) An illustration of the creation of localized spin excitations on top of the ground state of the model with Ĥ

0 = 0 [see
Eq. (1)], distributed according to a wave-packet profile. Darker shades of blue correspond to later stages of the evolution. (c)
Propagation and collision of meson wave packets resulting in elastic scattering (blue) and inelastic scattering into an unbound
two-kink state (purple). (d) Elastic scattering of two incoming 1-meson wave packets into two outgoing 1-meson wave packets.
(e) Inelastic scattering between two 1-mesons scattering into two unbound kinks moving away from each other (expanding the
purple region). The gradient regions in (d) and (e) from white to gray at early times mark adiabatic ramps from Ĥ0 to Ĥ.
These ramps prepare (dressed) 1-meson wave packets in the full interacting model from the (bare) wave packets of the free
model with only Ĥ0. The gradient regions back from gray to white at late times mark the reverse ramps that convert dressed
wave packets into bare ones. The tilde notation is used to indicate dressed states.

being di↵erent from that in the Standard Model. In the
one-dimensional ferromagnetic Ising spin model, the ele-
mentary excitations are kinks, or ‘domain walls’, which
are anti-aligned neighboring spins, see Fig. 1(a). Two
kinks can be bound together by a string of anti-aligned
spins, to form bound two-kink states, also called mesons.
Bound-state spectra [20, 25–28], string breaking [21, 29–
35], and slow thermalization [31, 36–40] have been stud-
ied, both theoretically and experimentally, in these sys-
tems in recent years.

To create non-equilibrium conditions in Ising spin sys-
tems exhibiting confinement, we go beyond global quench
processes and focus on scattering of individual excita-
tions on top of the interacting vacuum. This is motivated
by the fact that much of the strong-interaction dynam-
ics are studied in high-energy particle colliders [41, 42].
These experiments often rely on colliding hadrons or nu-
clei, which are composite (bound) excitations of the ele-
mentary quarks and gluons, hence generating a plethora
of final-state particles. How non-perturbative confin-
ing dynamics lead to these complex inelastic channels
through various hadronization and fragmentation mech-
anisms [10, 43, 44] is an intriguing question. Tensor-
network methods have proven a powerful numerical tool
to study scattering in one-dimensional models [45–49],
but simulating general scattering problems in quantum
field theories has remained out of reach. Several pro-
posals have emerged recently on how to realize scatter-
ing states and processes in simple low-dimensional field
theories on digital [50–56] and analog [48, 57, 58] quan-
tum simulators, but implementations have remained lim-
ited [54–56]. It is, therefore, valuable to study the scat-

tering problem in the simpler spin models, which may
provide a more realistic path to large-scale experimen-
tal implementations. This still demands preparing com-
posite (bound) states in the form of moving wave pack-
ets, which can be made to collide. It will also be im-
portant to investigate what types of Ising Hamiltonians
and initial states can lead to non-trivial inelastic scat-
tering, going beyond present studies which have found
elastic and inelastic scattering in nearest-neighbor mod-
els [45, 46, 57, 59] as well as power-law models, which,
nonetheless, require non-standard Hamiltonian engineer-
ing to generate inelastic processes [60, 61]. Our work sets
out to advance the state-of-the-art by addressing these
two requirements.

Concretely, we outline an experimental proposal cover-
ing the three central stages of scattering: (i) preparation
of Gaussian meson wave packets in one-dimensional Ising
spin models [see Fig. 1(b)], (ii) propagation and scatter-
ing of the wave packets, and finally (iii) detection of out-
going states [see Fig. 1(c)]. We propose two techniques
to prepare wave packets of bound kinks: one scheme en-
gineers a collective transition to a localized wave packet
using beyond nearest-neighbor spin-spin couplings, while
the other utilizes a (bosonic) quantum bus to enable exci-
tations needed to prepare the wave packet. An adiabatic
ramp is used to evolve the wave packets in the ‘free’ the-
ory to those in the ‘interacting’ theory. Additionally,
we study scattering of bound kinks in models with long-
range Ising couplings, where kinks are confined, and in
models with short-range Ising couplings, which exhibit
both bound and unbound kinks. Using numerical simu-
lations of scattering at di↵erent energies, we demonstrate
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FIG. 4. Numerical simulation of scattering. Panels (a-c,f-h) show the expectation value of h�̂x
i i as a function of time

for the evolution and scattering of two 1-mesons for (a-c) the power-law model with ↵ = 1.5 and (f-h) the exponentially
decaying model with � = 1. All initial states of the scattering simulations start with a perfect initial two-wave-packet state
with x0 = 5, k0 = ⇡/2 for the left wave packet and x0 = 20, k0 = �⇡/2 for the right wave packet, while the wave-packet
width is set to �x =

p
N/(2⇡). The first horizontal white line indicates the end of the linear adiabatic ramp Ur(tr) which

turns on h
z, while the second horizontal white line indicates the beginning of the linear adiabatic ramp Ur(tr)

† which turns o↵
h
z. (d) In the power-law model for ↵ = 1.5 and h

z = 1.4J0, only elastic scattering of 1-mesons with momenta (⇡/2,�⇡/2) is
allowed by conservation of energy and momentum, marked by black stars. Here, M1 and M2 denote the two lowest-lying meson
bands. (e) By contrast, in the exponentially decaying model for � = 1 and h

z = 0.83J0, several inelastic outgoing channels are
kinematically-allowed: the incoming mesons (marked by black stars) can scatter into mesons of di↵erent types or into a pair
of unbound kinks. Here, M1 and M2 denote the two lowest-lying meson bands, while K1 and K2 are the two lowest-lying kink
bands. (i) In the exponentially decaying model, the probabilities are plotted as a function of hz for two mesons scattering into
a pair of unbound kinks or elastically into two mesons. Unbound kinks are observed starting at h

z ⇡ 0.75J0 and higher. (j)
Region of kinematically allowed scattering from mesons into unbound kinks for the exponentially decaying model (� = 1) when
the input meson momenta k1 (traveling to the right) and k2 (traveling to the left) are varied. The color corresponds to the
value of hz

/J0 at which the unbound kink channel becomes kinematically allowed for the numerically computed values. For
slow moving mesons near k = 0, the unbound kink channel is kinematically allowed for hz >⇠ 0.5J0. At the momenta (⇡/2,⇡/2),
marked by a black star and used in the simulations in panels (a-c, f-i), the unbound kink channel is allowed for h

z >⇠ 0.722J0,
consistent with the initial rise from zero of the inelastic scattering probability in (d).

For scattering in the power-law model with ↵ = 1.5, as
shown in Fig. 4(a-c), only elastic scattering is detected in
the range of hz values considered. For the exponentially
decaying model with � = 1, we observe both elastic and
inelastic scattering in Fig. 4(f-h) as hz increases. The re-
gion of flipped magnetization that appears between the
outgoing particles in Fig. 4(g) and 4(h) is due to an in-
elastic scattering channel composed of a pair of unbound
kinks. When individual shots are measured in the final
state, this appears as a domain of flipped spins, whose
length grows in time as the kinks fly away from each
other. When this flipped domain has grown to a long
length, it will be simple to distinguish it from other out-
put states without unbound kinks. For values of hz > 1,
we observe up to 25% probability for such an unbound-
kinks scattering channel, see Fig. 4(i). Given this siz-
able probability and the distinct signature of the associ-
ated measurement, this proposal provides an opportunity
to detect inelastic scattering in near-term spin quantum

simulators.

The existence of the unbound kink channel in the ex-
ponentially decaying model is supported by an analy-
sis of the kinematically allowed scattering channels. In
Fig. 4(e), we show the lowest energy bands of the expo-
nentially decaying model with � = 1 and hz = 0.83J0,
consisting of two kinks and two mesons. These bands
are computed using uniform matrix product states [82]
with the quasi-particle ansatz of Ref. [100]. With these
numerically determined bands, one can find sets of out-
going particles with total energy and momentum that
match those of the incoming particles. For the case of
two 1-mesons with momenta ±⇡/2, the resulting sets of
outgoing particles are shown in Fig. 4(e) as matching
pairs of colored circles. Despite the existence of several
kinematically allowed inelastic scattering channels, our
simulations show that only one such channel has signif-
icant probability in the output state for the parameter
range we consider. This channel consists of an unbound
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able probability and the distinct signature of the associ-
ated measurement, this proposal provides an opportunity
to detect inelastic scattering in near-term spin quantum

simulators.

The existence of the unbound kink channel in the ex-
ponentially decaying model is supported by an analy-
sis of the kinematically allowed scattering channels. In
Fig. 4(e), we show the lowest energy bands of the expo-
nentially decaying model with � = 1 and hz = 0.83J0,
consisting of two kinks and two mesons. These bands
are computed using uniform matrix product states [82]
with the quasi-particle ansatz of Ref. [100]. With these
numerically determined bands, one can find sets of out-
going particles with total energy and momentum that
match those of the incoming particles. For the case of
two 1-mesons with momenta ±⇡/2, the resulting sets of
outgoing particles are shown in Fig. 4(e) as matching
pairs of colored circles. Despite the existence of several
kinematically allowed inelastic scattering channels, our
simulations show that only one such channel has signif-
icant probability in the output state for the parameter
range we consider. This channel consists of an unbound
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Figure 1. Sketch of a scattering event: The collision of two incoming mesons with
internal quantum numbers `1, `2 generates a superposition of several possible outcomes,
labelled by the quantum numbers of outgoing mesons.

numerical simulations. Finally, in Sec. 4, we propose concrete protocols to prepare,
simulate and observe meson scattering with present-day quantum simulators (e.g.,
Rydberg-atom arrays). The appendices contain various additional details on the
discussion and computations in the main text. In Appendix A we report additional
details on gauge invariance and confinement in the model under consideration in the
main text. In Appendix B we prove the exact mapping of its dynamics in the gauge-
neutral sector onto those of the quantum Ising chain in a tilted magnetic field. In
Appendix C and Appendix D we provide more details on the exact solution of the two-
and four-fermion problem, i.e., on the spectra of mesons and their scattering amplitudes,
in the limit of large fermion mass. In Appendix E we derive the analytic expression of the
meson current, we discuss its physical meaning and we prove the associated continuity
equation. Finally, in Appendix F we summarize and discuss the effects of having a finite
fermion mass.

2. Confinement and mesons

Particle confinement is a non-perturbative phenomenon arising in certain gauge theories,
which consists in the absence of charged asymptotic states: all stable excitations of the
theory above the ground state are neutral bound states of fermionic charges [24]. In
the context of QCD, confinement underlies the fact that quarks can only be observed in
composite structures such as mesons and baryons. Despite the fundamental difference
between particle confinement in QCD in (3 + 1) dimensions and in lower-dimensional
models [19, 20], the emergent composite particles share some basic properties, making
the latter convenient settings to gain insights into difficult aspects of the theory. In this
work we will be concerned with (1 + 1)-dimensional LGTs of this kind.

For the sake of definiteness, we will focus on the Z2-LGT defined by the following
Hamiltonian [25, 26]:

H = m

X

j

c
†
jcj +

⌧

2

X

j

�
z
j+1/2 + w

X

j

(c†j � cj) �
x
j+1/2 (cj+1 + c

†
j+1). (1)
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Figure 4. Manipulation of mesonic wavepackets by inhomogeneous fields. (a) Time
evolution of the meson current density J(s, t) originating from a single spin flip (see
the main text) at s/2 = (j1 + j2)/2 = 10.5, in the inhomogeneous field profiles shown
in the inset, interpolating between ⌧L = 0.54, wL = 0.25 (left) and ⌧R = 1.2, wR = 0.8
(right). The slopes of the dashed and dashed-dotted lines correspond to the maximal
velocity of the ` = 1 meson in the left and right regions, respectively. (b-c) Mesonic
spectra in the left (b) and right (c) regions. The horizontal dashed lines indicate the
range of allowed energies; the vertical lines define the range of momenta k⇤±�k allowed
in the right region. (d) Momentum distribution of the transmitted meson wavepacket.

of moderately longer chains and a limited amount of post-selection. The numerical
simulation in Fig. 4-(a) illustrates the core idea: when w/⌧ . 1, a spatially localized
spin flip in the left region mostly excites the lowest (and fastest) meson ` = 1 at all
momenta; hence, a sharp spatial variation in the fields ⌧(j), w(j) (inset) determines a
corresponding change in the shape of mesonic bands [from that in panel (b) to that in
(c)]; energy conservation (horizontal dashed lines) selects a narrow momentum window
k
⇤
± �k (vertical dashed lines) for which rightward propagation is allowed. Panel (d)

shows that at time t = 50 the fraction of mesonic wavepacket filtered in the right region
is ⇡ 20% (the rest is reflected at the interface), and its momentum distribution has
support within the selected window. An analogous preparation can be made on the
opposite side of the chain for the desired incoming mesonic wavepacket from the right.
Similarly, inhomogeneous fields can be used to accelerate mesons.

Finally, detecting the scattering products iii) is conceptually simple, as the mesons
involved in the various possible outcomes of a collision have different velocities [cf. Fig.
1], so they can be resolved as spatially separate wavepackets. For implementations
based on Eq. (7), the particle density c

†
jcj in Eq. (1) maps to the domain-wall

density (1� �
z
j�1/2�

z
j+1/2)/2: Thus, it is sufficient to measure the magnetization profile

h�
z
j+1/2(tf )i in the final state [44, 45, 46, 16] to reconstruct the momenta of the mesons

Scattering of mesons in quantum simulators 7

Figure 2. Probabilities of the various scattering channels (1, 3) ! (`01, `
0
2) as a function

of the incoming momenta, for w/⌧ = 0.6. The blue lines delimit the regions where
the inelastic channels (2, 2), (1, 2), (2, 1) are open. The probabilities of the channels
plotted in the five panels sum up to one with good precision [small deviations from
this value are shown in Fig. E1-(b)].

Figure 3. Mesonic wavepackets collision. (a) Spectra E`(k) of the lightest mesons
for the Z2-LGT in Eq. (1) with ⌧ = 1, w = 0.6 and m � ⌧ . The crosses indicate the
momenta and energies of the two mesons in the incoming (red) and outgoing (purple,
blue, green) states. (b-e) Probability density of the meson momenta p(k1, k2) (b,c) and
of the relative momentum p(k1 � k2) (d,e) at time t = 0 (b,d) and t = tf = 50 (c,e).
The dashed contours in panel (c) mark the regions p > 0.25.

the Fourier transform of  (s1, s2, r1, r2; t) with respect to the center-of-mass positions
s1,2. While the initial state shows a single density peak at (k0

1, k
0
2), the final state

gives three different density peaks, all lying on the line k1 + k2 = k
0
1 + k

0
2 mod ⇡,
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A cold-atom simulation proposal for scattering 
in an Ising model with a  LGT dualZ2

A trapped-ion simulation proposal for scattering 
in an Ising model with a  LGT dualZ2

Bennewitz, Ware, Schuckert, Lerose, Surace, 
Belyansky, Morong, Luo, De, Collins, Katz, Monroe, 
ZD, and Gorhskov, arXiv:2403.07061 [quant-ph].



Quark-antiquark scattering
9

10 20 30

10 20 30

0
0

1

20
40 0.40.20

10 20 30

10 20 30

(a)

߯ = 0 ߯ = ݉ߢ0.035 = 1.ͷߢ, ݉ = 1.ͷߢ,

... ...

෠ܧ

෠ܳ

) ݐ
s)

෠ܳ ෠ܳ
1

-1
݆୑ ݆୑

݆ୋ ݆ୋ

(b)

(c)

(d)

(e)

(f)

(g)

0.2

0.4

0.2

0.4 1

0.5

0

0

 

 

48

-48

0

0െ3/ߨെߨ

ݍܽʹ
3/ߨߨ

ݒ ୥
 (s

ite
s/

s)

0

0

(h)

1

0.5

0
0

1

20
40 0.80.40

) ݐ
s)

) ݐ
s)

) ݐ
s)

(s) ݐ (s) ݐ

Particle
Antiparticle

FIG. 6. (Color online). Particle-antiparticle collisions

in the large mass limit. (a) A schematic illustration of
particle-antiparticle collision in the quantum simulator. (b)
and (e): Expectation value of charge density on matter sites
hQ̂i illustrating the collision of moving particle (blue) and an-
tiparticle (red) wave packets. (c) and (f): Same data as in
the upper row with color plots. (d) and (g): Expectation
value of electric flux on gauge sites hÊi, illustrating the string
dynamics. (b)-(d) Collision dynamics in the deconfined case
(� = 0). The group velocity of the particle and antiparti-

cle is fitted to be v(f)P = �47.4(5) sites/s (dashed blue line),

and v(f)A = 48(1) sites/s (dashed red line), respectively. The
particle and antiparticle undergo an elastic collision. (e)-(g)
Collision dynamics in the confined case (� = 0.035). The
confining potential results in higher energy for the |/i elec-
tric flux, thus creating a string tension between the particle-
antiparticle pair, leading the multiple collisions. (h) Illustra-
tion of collision dynamics in the momentum space. After the
collision, the particle and antiparticle move apart in opposite
directions. When � > 0, they experience a constant attrac-
tive force / � which accelerates them towards each other.

namically in the vacuum background, which can be con-
sidered a meson, see Fig. 6(e)-(g).

Moving on from the previous low-energy particle col-
lisions, we bring the system out of equilibrium by an
abrupt global quench of the rest mass from m0 = 1.5 to

FIG. 7. (Color online). Quenching mass in particle-

antiparticle collisions. After same initialization in Fig. 6
at m0 = 1.5, we quench to mf < m0 at t = 0.1s. The
quenches lead to spontaneous pair production in the vacuum
background. For better comparison, we subtract the evolu-
tion of the pure vacuum background from the collision sim-
ulations for the same quenches and show their di↵erences in
particle density �Q̂ = Q̂pair�Q̂vac and entanglement entropy
�S = Spair � Svac. (a) and (b): When quenching to mf = 0,
we find that the wave packets tunnel through each other pe-
riodically, as a result of string inversions. The vacuum back-
ground undergoes scarred dynamics that deters the growth of
entanglement entropy, and the colliding wave packets produce
higher entropy than the scarred vacuum background. (c) and
(d): Around the critical point mf = mc, the vacuum back-
ground thermalizes, while the colliding wave packets oscillate
at the collision point and exhibit slowed growth of entropy
that leads to the negativity in panel (d). (e)-(h): Above the
critical point, we see a suppression of the tunneling of the par-
ticle and antiparticle through each other with the suppression
of pair production. Subsequently, we recover the low-energy
elastic collision dynamics in Fig. 6.

mf at t = 0.1 s, and thus access collision dynamics on a
higher energy scale [45, 47, 84].

The vacuum background itself is unstable under the
violent quenches of m [45, 72]. Around mf = 0, the
vacuum background undergoes persistent oscillation be-

9

10 20 30

10 20 30

0
0

1

20
40 0.40.20

10 20 30

10 20 30

(a)

߯ = 0 ߯ = ݉ߢ0.035 = 1.ͷߢ, ݉ = 1.ͷߢ,

... ...

෠ܧ

෠ܳ

) ݐ
s)

෠ܳ ෠ܳ

1

-1
݆୑ ݆୑

݆ୋ ݆ୋ

(b)

(c)

(d)

(e)

(f)

(g)

0.2

0.4

0.2

0.4 1

0.5

0

0

 

 

48

-48

0

0െ3/ߨെߨ

ݍܽʹ
3/ߨߨ

ݒ ୥
 (s

ite
s/

s)

0

0

(h)

1

0.5

0
0

1

20
40 0.80.40

) ݐ
s)

) ݐ
s)

) ݐ
s)

(s) ݐ (s) ݐ

Particle
Antiparticle

FIG. 6. (Color online). Particle-antiparticle collisions

in the large mass limit. (a) A schematic illustration of
particle-antiparticle collision in the quantum simulator. (b)
and (e): Expectation value of charge density on matter sites
hQ̂i illustrating the collision of moving particle (blue) and an-
tiparticle (red) wave packets. (c) and (f): Same data as in
the upper row with color plots. (d) and (g): Expectation
value of electric flux on gauge sites hÊi, illustrating the string
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antiparticle collisions. After same initialization in Fig. 6
at m0 = 1.5, we quench to mf < m0 at t = 0.1s. The
quenches lead to spontaneous pair production in the vacuum
background. For better comparison, we subtract the evolu-
tion of the pure vacuum background from the collision sim-
ulations for the same quenches and show their di↵erences in
particle density �Q̂ = Q̂pair�Q̂vac and entanglement entropy
�S = Spair � Svac. (a) and (b): When quenching to mf = 0,
we find that the wave packets tunnel through each other pe-
riodically, as a result of string inversions. The vacuum back-
ground undergoes scarred dynamics that deters the growth of
entanglement entropy, and the colliding wave packets produce
higher entropy than the scarred vacuum background. (c) and
(d): Around the critical point mf = mc, the vacuum back-
ground thermalizes, while the colliding wave packets oscillate
at the collision point and exhibit slowed growth of entropy
that leads to the negativity in panel (d). (e)-(h): Above the
critical point, we see a suppression of the tunneling of the par-
ticle and antiparticle through each other with the suppression
of pair production. Subsequently, we recover the low-energy
elastic collision dynamics in Fig. 6.
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FIG. 9. (Color online). Meson collisions. (a) A schematic illustration of meson collisions in the quantum simulator. (b)-(e):
Meson scattering in the deconfined case. The meson wave packet is unstable under the collision, we observe the post-collision
delocalization of all wave packets. (f)-(i): Meson scattering in the presence of a confining potential � = 0.02. (j)-(m): Meson
scattering in the presence of a confining potential � = 0.04. As the confining potential increases, the meson wave packets
become more stable. This is reflected in both the post-collision entanglement production which decreases with �, and the
electric flux at the center hÊiL/2,L/2+1 which decreases towards the eigenvalue of the background vacuum |.i, indicating the
mesons wave packets remain localized after the collision.

Fig. 6, see also Fig. 7(e) and (g). As a result, the par-
ticle and antiparticle are restricted to their initial side,
and the late-time density imbalance ĪP and ĪA become
non-zero, while their absolute value increases with m, see
Fig. 8(d) and (f).

B. Meson–meson collision

We now turn to the collision of composite particles
(mesons) and demonstrate how collision dynamics re-
veals their band structure. We focus on the large mass
case with m = 1.5 where spontaneous pair creation in

the background is negligible. Following the protocol de-
scribed in Sec. III, we initiate two meson wave packets
moving towards each other, see Fig. 9(a). The barriers
used to prepare the moving wave packets are removed
after up to 0.2 s. Because the mesons move faster for
�  0.02, we remove the barriers earlier (at 0.15 s) to
avoid multiple reflections on the barrier.

In the deconfined case (� = 0), shown in Fig. 9(b)-
(e), the elementary particles and antiparticles that make
up the mesons scatter elastically with no string tension
between one another. We find the delocalization of all
wave packets and strong entropy production after the
collision. The initially localized electric flux |/i spreads
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FIG. 9. (Color online). Meson collisions. (a) A schematic illustration of meson collisions in the quantum simulator. (b)-(e):
Meson scattering in the deconfined case. The meson wave packet is unstable under the collision, we observe the post-collision
delocalization of all wave packets. (f)-(i): Meson scattering in the presence of a confining potential � = 0.02. (j)-(m): Meson
scattering in the presence of a confining potential � = 0.04. As the confining potential increases, the meson wave packets
become more stable. This is reflected in both the post-collision entanglement production which decreases with �, and the
electric flux at the center hÊiL/2,L/2+1 which decreases towards the eigenvalue of the background vacuum |.i, indicating the
mesons wave packets remain localized after the collision.
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veals their band structure. We focus on the large mass
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scribed in Sec. III, we initiate two meson wave packets
moving towards each other, see Fig. 9(a). The barriers
used to prepare the moving wave packets are removed
after up to 0.2 s. Because the mesons move faster for
�  0.02, we remove the barriers earlier (at 0.15 s) to
avoid multiple reflections on the barrier.
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electric flux at the center hÊiL/2,L/2+1 which decreases towards the eigenvalue of the background vacuum |.i, indicating the
mesons wave packets remain localized after the collision.

Fig. 6, see also Fig. 7(e) and (g). As a result, the par-
ticle and antiparticle are restricted to their initial side,
and the late-time density imbalance ĪP and ĪA become
non-zero, while their absolute value increases with m, see
Fig. 8(d) and (f).

B. Meson–meson collision

We now turn to the collision of composite particles
(mesons) and demonstrate how collision dynamics re-
veals their band structure. We focus on the large mass
case with m = 1.5 where spontaneous pair creation in

the background is negligible. Following the protocol de-
scribed in Sec. III, we initiate two meson wave packets
moving towards each other, see Fig. 9(a). The barriers
used to prepare the moving wave packets are removed
after up to 0.2 s. Because the mesons move faster for
�  0.02, we remove the barriers earlier (at 0.15 s) to
avoid multiple reflections on the barrier.

In the deconfined case (� = 0), shown in Fig. 9(b)-
(e), the elementary particles and antiparticles that make
up the mesons scatter elastically with no string tension
between one another. We find the delocalization of all
wave packets and strong entropy production after the
collision. The initially localized electric flux |/i spreads
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law, @xE = e † , ties the total electric field ET = E✓+E
to the dynamical charges, and equals ET = ep

⇡
� in the

bosonic dual [108].
Two regimes will be studied near the Z2 critical point,

shown in Fig. 2 as (b) and (c). Point (b) is in the de-
confined phase [red line at ✓ = ⇡ in Fig. 2(a) terminat-
ing at the Ising critical point], where the ground state is
two-fold degenerate [Fig. 2(b,i)]. Here, fundamental ex-
citations are “half-asymptotic” [99] fermions (“quarks”),
appearing as topological kinks in the bosonic dual [see
Fig. 2(b,ii)]. Point (c) in Fig. 2(a) is in the confined
phase, with a unique ground state [Fig. 2(c,i)] and quark-
antiquark bound-state (“meson”) excitations.

Quark-antiquark scattering.—We first consider quark-
antiquark scattering in the deconfined phase [Fig. 2(b)].
Constructing a uMPS representation of the two ground
states [109], we use the uMPS quasiparticle ansatz [110,
111] to obtain single-particle energy-momentum eigen-
states with dispersion E(p) and momenta p 2 [�⇡,⇡)
(see the SM [100]). From this, we construct two Gaus-
sian wave packets, localized in momentum and position
space, centered at opposite momenta ±p0. The initial
state consists of a finite nonuniform region of 150–300
sites containing the two wave packets, and is surrounded
(on the left and the right) by the uniform vacuum [we
choose the vacuum with positive ET , i.e., the right mini-
mum of Fig. 2(b,i)]. We then time-evolve this state under
the Hamiltonian in Eq. (3), while dynamically expand-
ing the nonuniform region [112–114] up to 600–1300 sites
(see the SM [100] for a more detailed description). By
working near the critical point, where the quark mass
mq ⌘ E(p = 0) (i.e., the gap) is small, one can con-
sider momenta up to |p0| <⇠ 0.8. These are su�ciently
small to keep the physics in the long-wavelength regime of
the lattice model, where the dispersion is approximately
relativistic E(p) ⇡ (p2 +m2

q)
1
2 , but highly relativistic

center-of-mass (CM) energies ECM ⌘ 2E(p0) <⇠ 30mq are
achieved.

Figure 3(a) shows the space-time distribution of the
electric field for collisions at three representative ener-
gies, ECM/mq = 11.4, 23.0, and 28.8. Initially, the quark
and antiquark are separated, resembling Fig. 2(b,ii), with
electric field between the charges equal in magnitude but
opposite in sign to the field outside [the two regions corre-
spond to the two degenerate ground states in Fig. 2(b,i)].
Under time evolution, the two charges propagate ballis-
tically, shrinking the negative-field region until they col-
lide. During the collision, the particles bounce o↵ each
other and reverse their propagation direction elastically,
the sole process at lower energies. Specifically, as can
be seen in Fig. 3(a), at the lowest energy, ECM/mq =
11.4, the post-collision value of ET between the charges
is practically equal to the pre-collision value. For the
higher-energy collisions, ECM/mq = 23.0 and 28.8, an in-
crease of the post-collision electric field is observed, sig-
nalling additional charge production.
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FIG. 3. Quark-antiquark scattering in the deconfined phase.
(a) Time evolution of the electric field for di↵erent center-
of-mass energies. (b) Time evolution of the von Neumann
entanglement entropy for a cut at x = 0, for the same three
collisions as in (a). (c) Elastic scattering probability (right,
blue) and asymptotic von Neumann entanglement entropy for
the x = 0 cut (left, green) as a function of the center-of-mass
energy. The parameters are µ2 = 0.1 and � = 0.5 [see Eq. (3)].

While our numerical approach does not rely on strong-
or weak-coupling expansion, the relevant scattering chan-
nels can be understood from weak-coupling arguments as
follows. In the SM [100], we derive, in the nonrelativis-
tic limit, an e↵ective potential between opposite charges
at the lowest order in e/m starting from Eq. (1), which
reads (in the center-of-mass frame)

Ve↵(x) =
e2

2

✓
|x|� ✓

⇡
x

◆
+

e2

4m2
�(x) . (4)

Here, x is the distance between charges. For ✓ 6= ⇡, one
recovers linear confinement [Fig. 2(c,ii)] [50, 99, 108, 115],
while at ✓ = ⇡, charges experience short-range repulsion
due to the delta function in Eq. (4) [Fig. 2(b,ii)]. This im-
plies the absence of stable bound states (mesons) in the
deconfined phase, which is confirmed numerically in the
SM [100]. All possible scattering channels are, therefore,
(even-numbered) multi-quark states. The lowest-order
channel after the elastic one (qq̄ ! qq̄) is the four-quark
production (qq̄ ! qq̄qq̄), exhibiting quark fragmentation.
In the latter case, the two inner particles screen the elec-
tric field produced by the outer two, consistent with the
two rightmost panels in Fig. 3(a).

Elastic and inelastic processes are also distinguished
by the production of von Neumann entanglement entropy
[SvN(x, t) = � tr(⇢>x(t) ln ⇢>x(t)) with ⇢>x(t) being the
reduced density matrix for sites y > x] across the collision
point (x = 0), shown in Fig. 3(b) as a function of time.
Figure 3(c) also shows the asymptotic (t ! 1) entangle-
ment generated as a function of the collision energy. The
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FIG. 6. (Color online). Particle-antiparticle collisions

in the large mass limit. (a) A schematic illustration of
particle-antiparticle collision in the quantum simulator. (b)
and (e): Expectation value of charge density on matter sites
hQ̂i illustrating the collision of moving particle (blue) and an-
tiparticle (red) wave packets. (c) and (f): Same data as in
the upper row with color plots. (d) and (g): Expectation
value of electric flux on gauge sites hÊi, illustrating the string
dynamics. (b)-(d) Collision dynamics in the deconfined case
(� = 0). The group velocity of the particle and antiparti-

cle is fitted to be v(f)P = �47.4(5) sites/s (dashed blue line),

and v(f)A = 48(1) sites/s (dashed red line), respectively. The
particle and antiparticle undergo an elastic collision. (e)-(g)
Collision dynamics in the confined case (� = 0.035). The
confining potential results in higher energy for the |/i elec-
tric flux, thus creating a string tension between the particle-
antiparticle pair, leading the multiple collisions. (h) Illustra-
tion of collision dynamics in the momentum space. After the
collision, the particle and antiparticle move apart in opposite
directions. When � > 0, they experience a constant attrac-
tive force / � which accelerates them towards each other.

namically in the vacuum background, which can be con-
sidered a meson, see Fig. 6(e)-(g).

Moving on from the previous low-energy particle col-
lisions, we bring the system out of equilibrium by an
abrupt global quench of the rest mass from m0 = 1.5 to

FIG. 7. (Color online). Quenching mass in particle-

antiparticle collisions. After same initialization in Fig. 6
at m0 = 1.5, we quench to mf < m0 at t = 0.1s. The
quenches lead to spontaneous pair production in the vacuum
background. For better comparison, we subtract the evolu-
tion of the pure vacuum background from the collision sim-
ulations for the same quenches and show their di↵erences in
particle density �Q̂ = Q̂pair�Q̂vac and entanglement entropy
�S = Spair � Svac. (a) and (b): When quenching to mf = 0,
we find that the wave packets tunnel through each other pe-
riodically, as a result of string inversions. The vacuum back-
ground undergoes scarred dynamics that deters the growth of
entanglement entropy, and the colliding wave packets produce
higher entropy than the scarred vacuum background. (c) and
(d): Around the critical point mf = mc, the vacuum back-
ground thermalizes, while the colliding wave packets oscillate
at the collision point and exhibit slowed growth of entropy
that leads to the negativity in panel (d). (e)-(h): Above the
critical point, we see a suppression of the tunneling of the par-
ticle and antiparticle through each other with the suppression
of pair production. Subsequently, we recover the low-energy
elastic collision dynamics in Fig. 6.

mf at t = 0.1 s, and thus access collision dynamics on a
higher energy scale [45, 47, 84].

The vacuum background itself is unstable under the
violent quenches of m [45, 72]. Around mf = 0, the
vacuum background undergoes persistent oscillation be-
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of pair production. Subsequently, we recover the low-energy
elastic collision dynamics in Fig. 6.
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FIG. 9. (Color online). Meson collisions. (a) A schematic illustration of meson collisions in the quantum simulator. (b)-(e):
Meson scattering in the deconfined case. The meson wave packet is unstable under the collision, we observe the post-collision
delocalization of all wave packets. (f)-(i): Meson scattering in the presence of a confining potential � = 0.02. (j)-(m): Meson
scattering in the presence of a confining potential � = 0.04. As the confining potential increases, the meson wave packets
become more stable. This is reflected in both the post-collision entanglement production which decreases with �, and the
electric flux at the center hÊiL/2,L/2+1 which decreases towards the eigenvalue of the background vacuum |.i, indicating the
mesons wave packets remain localized after the collision.

Fig. 6, see also Fig. 7(e) and (g). As a result, the par-
ticle and antiparticle are restricted to their initial side,
and the late-time density imbalance ĪP and ĪA become
non-zero, while their absolute value increases with m, see
Fig. 8(d) and (f).

B. Meson–meson collision

We now turn to the collision of composite particles
(mesons) and demonstrate how collision dynamics re-
veals their band structure. We focus on the large mass
case with m = 1.5 where spontaneous pair creation in

the background is negligible. Following the protocol de-
scribed in Sec. III, we initiate two meson wave packets
moving towards each other, see Fig. 9(a). The barriers
used to prepare the moving wave packets are removed
after up to 0.2 s. Because the mesons move faster for
�  0.02, we remove the barriers earlier (at 0.15 s) to
avoid multiple reflections on the barrier.

In the deconfined case (� = 0), shown in Fig. 9(b)-
(e), the elementary particles and antiparticles that make
up the mesons scatter elastically with no string tension
between one another. We find the delocalization of all
wave packets and strong entropy production after the
collision. The initially localized electric flux |/i spreads
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FIG. 9. (Color online). Meson collisions. (a) A schematic illustration of meson collisions in the quantum simulator. (b)-(e):
Meson scattering in the deconfined case. The meson wave packet is unstable under the collision, we observe the post-collision
delocalization of all wave packets. (f)-(i): Meson scattering in the presence of a confining potential � = 0.02. (j)-(m): Meson
scattering in the presence of a confining potential � = 0.04. As the confining potential increases, the meson wave packets
become more stable. This is reflected in both the post-collision entanglement production which decreases with �, and the
electric flux at the center hÊiL/2,L/2+1 which decreases towards the eigenvalue of the background vacuum |.i, indicating the
mesons wave packets remain localized after the collision.

Fig. 6, see also Fig. 7(e) and (g). As a result, the par-
ticle and antiparticle are restricted to their initial side,
and the late-time density imbalance ĪP and ĪA become
non-zero, while their absolute value increases with m, see
Fig. 8(d) and (f).

B. Meson–meson collision

We now turn to the collision of composite particles
(mesons) and demonstrate how collision dynamics re-
veals their band structure. We focus on the large mass
case with m = 1.5 where spontaneous pair creation in

the background is negligible. Following the protocol de-
scribed in Sec. III, we initiate two meson wave packets
moving towards each other, see Fig. 9(a). The barriers
used to prepare the moving wave packets are removed
after up to 0.2 s. Because the mesons move faster for
�  0.02, we remove the barriers earlier (at 0.15 s) to
avoid multiple reflections on the barrier.

In the deconfined case (� = 0), shown in Fig. 9(b)-
(e), the elementary particles and antiparticles that make
up the mesons scatter elastically with no string tension
between one another. We find the delocalization of all
wave packets and strong entropy production after the
collision. The initially localized electric flux |/i spreads
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mesons wave packets remain localized after the collision.
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FIG. 1. Rydberg lattice gauge theory quantum simulator. a, Programmable Rydberg-atom array. Atoms are globally driven by Rydberg
lasers with effective Rabi frequency ⌦ and detuning �, and individually addressed via far-detuned lasers which provide local light shifts �i
(Methods). b, Lattice gauge theory (LGT) mapping. Atomic states |gi and |ri encode gauge fields +E (blue arrow) and �E (red arrow) on odd
sites, with the atom-field correspondence inverted on even sites. The Rydberg blockade effect enforces Gauss’s law. At matter sites (defined as
the interstitial positions between adjacent gauge sites), positive and negative charges emerge as domain walls between opposite gauge polarities.
c, Realization of the quantum link model. The LGT configuration directly maps to the atomic state arrangement in the array shown in a,
exhibiting alternating gauge fields with localized matter excitations. d, Control of the LGT Hamiltonian. Global detuning � modulates fermion
mass m from 0 to m > mc, sculpting V (�) between single-minimum and double-well structures in e. Staggered detuning �i = (�1)

i�
shifts ✓ away from ⇡, driving confinement-deconfinement transitions via potential asymmetry. e, Confinement-deconfinement mechanism.
At ✓ = ⇡ (deconfinement), degenerate minima of V (�) enable free propagation with vanishing string tension. For ✓ 6= ⇡ (confinement),
asymmetry induces non-zero string tension, imposing an energy cost that increases linearly with separation distance, suppressing pair creation.
f, Dynamical control of scattering dynamics. High-fidelity meson-like initial state is prepared through combined global Rydberg Raman
⇡-pulse and large-scale local shelving beams (Methods). Subsequently, spatio-temporal control of the LGT Hamiltonian parameters during
particle scattering triggers quantum freeze-out dynamics and enables the freezing of intermediate scattering states.

cal freeze-out—indicating that the highly energetic scattering
state generated by the dynamics approximately describes an
equilibrium state of the quenched Hamiltonian. This observa-
tion is reminiscent of freeze-out descriptions of heavy ion col-
lisions [49–51], where the result of a highly non-perturbative,
non-equilibrium process admits an effective equilibrium de-
scription.

The model and experimental setup

Our experimental platform consists of a programmable ar-
ray of up to 30 87Rb atoms (Fig. 1a). The atoms are ini-
tially prepared in the ground state |gi and coupled to a Ry-
dberg state |ri via a two-photon transition with effective Rabi
frequency ⌦ and global detuning �. Site-selective control
is achieved using far-detuned addressing lasers, which pro-
gram local AC-Stark shifts �i at each atomic site. This capa-
bility enables tailored detuning patterns—including the stag-
gered configuration �i = (�1)

i
� for tuning the topological

✓-angle (Fig. 1d-e). The dynamics of the Rydberg atom ar-
ray is described by the following Hamiltonian: ĤR/~ =P

i

⇥
⌦
2 �̂

x
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⇤
+
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i<j Vij n̂in̂j , where �̂x

i repre-

sents the coherent coupling between ground and Rydberg
states, n̂i is the Rydberg state occupation operator, Vij de-
scribes the van der Waals interactions between atoms.

In the Rydberg blockade regime, i.e. Vi,i+1 � ⌦, adjacent
atoms cannot be simultaneously excited to Rydberg states.
Under this dynamical constraint, ĤR can be mapped onto the
Hamiltonian of a U(1) LGT [31] in the quantum link model
formulation [52] (Methods):
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Here,  ̂i ( ̂†
i ) represents the annihilation (creation) operators

for staggered fermion at site i. Ûi,i+1 denotes the dynamical
gauge field at the link between sites i and i + 1, and is rep-
resented as a spin-1/2 annihilation operator. Its conjugate is
the electric field Êi,i+1, and satisfies the commutation relation
[Êi,i+1, Ûi,i+1] = Ûi,i+1. The LGT dynamics is described by
a gauge-matter coupling , the staggered fermion mass m, and
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Hilbert space fragmentation at the � = � resonance [55, 56]
are abruptly replaced by post-quench light-cone propagation
(Fig. 3d).

This quench-induced transition is further characterized
by employing the averaged central electric flux Ec(t) =

1
14

P21
i=8 Ei(t) as an order parameter. The measured Ec(t)

dynamics (Fig. 3e) exhibit a discontinuous shift in the oscil-
latory baseline (denoted by dashed lines) at the quench point,
signifying a transition between confinement and deconfine-
ment. Measured spatial charge distributions in Fig. 3f also
corroborate this transition, with particles evolving from con-
finement (⌦t = 0) to delocalization (⌦t = 30.2) within a sin-
gle coherent evolution enabled by quantum quench dynamics.

Scattering and freeze-out dynamics

High-energy scattering of composite particles like mesons
provides fundamental probes of nonperturbative gauge dy-
namics, exhibiting hallmark phenomena including confine-
ment and bound-state formation or dissociation through com-
plex multistage processes [48]. Despite advances in nonper-
turbative theoretical methods, experimental studies of real-
time scattering dynamics remain elusive due to challenges in
preparing controlled initial states and resolving ultrafast pro-
cesses. Rydberg quantum simulators for lattice gauge the-
ories now offer new pathways to investigate these dynam-
ics [3, 7]. Leveraging our Rydberg atom array with site-and-
time-resolved control, we investigate scattering and freeze-out
dynamics by initializing two meson-like excitations separated
by seven sites in a vacuum state, with fermion mass m = 1.5

to suppress vacuum fluctuations. Differently from other nu-
merically investigated settings [3, 57], here the scattering we
are interested in is that between the quasiparticles generated
after quenching a meson state—that is, those investigated in
the previous section. This setup has the advantage that there
is no need of specific wave-packet initialization, and is robust
to imperfections as long as those do not affect meson melting.

The dynamics in the strong confinement regime (� = 0.6)
are probed by tuning the topological ✓ angle via staggered
detuning �, breaking the vacuum degeneracy and stabilizing
the charges. The charges exhibit spatial localization through-
out evolution, quantified by site-resolved dynamical charge
Qi(t) (Fig. 4a) and density ⇢i(t) (Fig. 4c), with minimal back-
ground fluctuations. Reducing � while maintaining confine-
ment yields moderate bounded wave packet spreading, as dis-
cussed in-depth in Methods.

Transitioning to deconfinement (� = 0) fundamentally
alters the dynamics: The linear confining potential is re-
placed by the vanishing of the string tension, manifesting
as ballistic propagation of decoupled constituent charges [7,
31]—positive (negative) charges moving rightward (left-
ward)—along light-cone trajectories (Fig. 4b dashed lines),
exhibiting pronounced spatial broadening with no energy cost
for charge separation. Consequently, as right-moving posi-
tive charge (from the left excitation) and left-moving negative
charge (from the right excitation) propagate outward, their

FIG. 4. Real-time scattering dynamics in the U(1) lattice gauge

theory. a, b, Experimentally measured spatiotemporal evolution of
the dynamical charge Qi(t) under varying string tensions. c, d, Cor-
responding measured site-resolved particle density ⇢i(t) = |Qi(t)|
at selected evolution times. a, c, In the strong confinement regime
(� = 0.6), charges remain localized with density concentrated at
initial positions throughout evolution. b, d, In the deconfinement
phase (� = 0), charges propagate freely and scatter when their wave
packet overlap. A central density peak is observed at ⌦t = 19.6,
which evolves into a symmetric double-peak structure at ⌦t = 29.4.
Dashed lines in b indicate the light-cone trajectories. Inset of d

shows a schematic illustration of the collision. e, f, Numerical sim-
ulations of the corresponding site-resolved particle density for the
confinement (e) and deconfinement (f) regimes. Error bars represent
one standard deviation.

wave packets overlap at ⌦t ⇡ 11. This collision dynamics
generates a diamond-shaped interference pattern, characteris-
tic of (1+1)D quasi-elastic scattering [31]. The transient cen-
tral peak at ⌦t = 19.6 evolves into symmetric double peaks at
⌦t = 29.4 (Fig. 4d), as scattered particles continue to propa-
gate beyond the overlapping region, in excellent agreement
with numerical simulations (Fig. 4e-f). Concurrently, den-
sity peaks exceeding vacuum background fluctuations appear
at the left (right) edges, corresponding to uncollided negative
(positive) charges propagating freely outward.

The spatio-temporal control of Hamiltonian parameters al-
lows us to explore a combined dynamics, where the value of
the ✓ angle is changed abruptly along scattering—and thus,
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Figure 1. Simulating the dynamics of extreme physical environments (right) emerging from the SM of quarks, leptons, gauge
fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.

While some direct predictions of the SM are accessible by perturbative calculations, non-perturbative simulations are
required for most processes, which involve configuration-space, i.e., Hilbert space, sizes that easily exceed the number of atoms
in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
real number, these weights allow for systematic importance sampling central to lattice-field-theory programs on classical
computers—enabling first-principles simulations of e.g., mesons, their decays and scattering, the muon’s anomalous magnetic
moment, properties of nucleons and nuclei, and the phase diagram of dilute matter at high temperature, see Refs. [7–10] for
recent reviews. However, when iS becomes complex, as in finite-density systems and in real-time simulations, the sampling
techniques can fail due to large cancellations. While ideas are being pursued to tame many ‘sign problems’ [11–13], they are
believed to be NP-hard [14].

Unfortunately, sign problems arise frequently in nuclear and high-energy physics, challenging the pursuit of answers to
many forefront questions, as identified and elaborated in recent studies, e.g., Refs. [15–18]. For example, first-principles
predictions for phases and phase transitions of matter, e.g., those probed at the Large Hadron Collider (LHC) at CERN and
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and those relevant to the interior cores of
neutron stars and the evolution of supernovae, are currently out of reach. The non-equilibrium and thermalization dynamics of
matter produced during heavy-ion collisions and in the early universe also remain unresolved. In particle colliders, available
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fields, and the Higgs boson (left) requires large-scale classical or quantum simulations (center). Quantum entanglement and
coherence utilized by quantum computers are expected to enable progress while providing new insights into the SM itself.
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in the universe. The quantum-mechanical probability of a given process is determined by Feynman’s path integral, summing
the amplitudes of all possible trajectories weighted by the complex exponential of their action, eiS . When iS is a negative
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FIRST-PRINCIPLES PREDICTIONS FOR SCATTERING PROCESSES:

QUANTUM SIMULATIONS? YES! GAME IS ON BUT LONG WAY TO GO!

Check out our recent review:
Halimeh, Mueller, Knolle, Papić, ZD, “Quantum simulation of out-of-
equilibrium dynamics in gauge theories”, arXiv:2509.03586 [quant-ph].
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