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Quick Recap: VQE

(| H |)

Finding the ground state is hard EO = 11111

Exploit Variational Principle —

Minimize over 6

Propose ansatz: | ¢ (9 ) > - Classical

Use Quantum Computer

Simple (polynomial) quantum circuits can be hard to simulate
classically
Ansatz expressibility: Quantum advantage?

(&

Wy =
—VH | Bpy1(01,1)
—VH [ Rpy5(01,2)
—VH [{ Rpy 5(01,3)
—VH ( Rpy 4(01,4)
—VH | Bp5(015)

McClean, J.R., Boixo, S., Smelyanskiy, V.N. et
al. Nat Commun 9, 4812 (2018)

Peruzzo, A. et al. Nat. Commun. 5, 4213 (2014) 4



The Variational Model Loop

Training [Classical]

P e " Loss

:' 0) — = A o

]
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— [ — — - — ,
- Ur(Z 3 f(.flf, ) |
|xt : s E(x) | UT( ) OI - — E
npu 1 : — :
Encoding : |0> | - _ : Vf(CE', 9)
I : """"""""

\\ R

————————————————————

Parametrized Quantum Circuit (PQC) [Quantum]



The Variational Quantum Algorithm Loop

Training [Classical] Loss (classical post-processing):
Quantifies goodness of model

’
\
110) — - A 7 Output
. : o | v /\: f(f —;) fliQ.uatntuTCircchloutput.
. - - 1 | : rain to solve problem
€Xr—> - Ug(Z) Ur(0) | ! ) |
Input : ] B : :6 - 9_':
. I : 1 E Gradients can be computed
Encoding : |0> | - — 1 f( ; ); reusing circuit
1 : _______________
\
\- ___________________ ,'
Parametrized Quantum Circuit (PQC) [Quantum] More general (Quantum Machine Learning)



Quantify the problems

In practice, convergence is hard. How to characterize?

Metrics: Expressivity, trainability, accuracy, depth



Quantify the problems

In practice, convergence is hard. How to characterize?

Metrics: Expressivity, trainability, accuracy, depth

Barren Plateaus

Barren Plateau No Barren Plateau

Exponential concentration
of loss landscape (with
increasing qubits)

Equivalent to concentration of
A. Arrasmith, Z. Holmes, M. Cerezo and P. Coles,
Var 9—’[8 i E] Quantum Sci. Technol. 7, 045015 (2022)
Larocca, M., Thanasilp, S., Wang, S. et al.. Nat Rev
Phys 7, 174-189 (2025)

Common problem: Very expressive — Barren Plateau!



Invariance and Equivariance

Invariance: Property of our system and solution Equivariance:

F(@ ) Happy/Sad? Ex. Layer of Convolutional Neural Network

Rotation
1111

Happy



Invariance and Equivariance

Invariance: Property of our system and solution Equivariance:

F(@) Happy/Sad?

Rotation= V
L1 L : : :

LI
N
2,

1]

Happy

For simple quantum circuit: [R(g), Ue] — [R(g), O] — O

(same unitary representation)
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Implementation: Problem

Ground state of Transverse Field Ising Model (TFIM) 1) = [0Y, [4) — |1)

N N
Hypv =—J Y ZiZin—g Y X,
i—1 i=1
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Implementation: Problem

Ground state of Transverse Field Ising Model (TFIM) 1) = [0Y, [4) — |1)

N N
Hypv =—J Y ZiZin—g Y X,
i—1 i=1

Translation Symmetry (Periodic conditions)

partysymmetry: B 1 ...)) = BIWAL ...))

Symmetries

Representations

N
7' = SWAP,_1,,SWAP, 5, 1...SWAP,3SWAP,, P=][X;
1=1
12



Implementation: Ansatz

N i 2
Initial State  |[%0) = |+)® Parity breaking gates
' |
H = Rzz Rx Ry R
| | Rzz |
' |
H — Rx Ry —+
“Encoding” | R | :
circuit : ZZ : . Repeated L times
R R
H : X i _:_ Non-Equivariant: As shown
| Rzz |  Equivariant: Without Ry
| |
H Rzz Rx Ry
| - |
D) (D) (1)

Same parameter for all qubits (translational equivariance)

Ry () = e~%Y, Rx(0) = e 7'2% , Rz5(0) = e~'3%7 -



Better convergence

Loss Function

N=6,L=3

0 5 10 15 20 25 30 35

Epoch

Example of training Equivariant model
using Gradient Descent

40

Convergence Comparison (L-BFGS) with 10 qubits

03 —&— Equivariant
' —#— Non Equivariant
LG 0.2
I
“ 0.1
0.0 -
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(%]
C
.© 1000 A
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o]
= 5004
0 — —®—— — O _—-
2 4 6 8 10 12
L

Comparison of equivariant and
non-equivariant models, trained with L-BFGS
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Better convergence

Loss Function

N=6,L=3

—— noiseless
—— noisy

Sampling noise doesn’t
disturb training (40 shots)

5 10 15 20 25 30 35 40
Epoch

Example of training Equivariant model
using Gradient Descent

Convergence Comparison (L-BFGS) with 10 qubits

03 —&— Equivariant
' —#— Non Equivariant
u‘§ 0.2
I
“ 0.1
0.0 -
1500 A
(%]
C
.© 1000 A
©
2
= 5004
0 ®— —— —— —O
2 4 6 8 10 12
L

Comparison of equivariant and
non-equivariant models, trained with L-BFGS
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Results: Barren Plateaus

TFIM Barren plateau

10° 4

1071 5

=2
Ry 102

Var 9g(Z2)

Rzz

—{H {7}

Shown: variance of ZZ measurement

1074

—&— Equivariant
~— Non Equivariant

N N
Hrrma = —J Y ZiZip1—9 Y X
' i=1

1=1

Barren Plateaus:

g
(o)}
oo

10 12

- non-equivariant model yes!
- equivariant model no!

14 16 18

(In fact “Dynamical Lie
Algebra” N®scaling)
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https://wumbo.net/symbols/superscript-three/

Results: Noise Model

Random X and Z noise, probability 8 N=10, L=2
nshots: 1000, epsilon: 0.00800 nshots: 400
-2 -1
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%] wn
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Noisy barren plateaus
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Results: BSC chip

N=5,L=2

Quantum chip loss evolution

0- /__/\___\/_\/\

Loss Function
I
w

G -6

Old Chip topology

(New one is worse!)
Noise dominated

0.8

- 0.6

- 0.4

- 0.2

- 0.0

--0.4

Gradients
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Conclusions and Outlook

Exploit symmetries through equivariance, for example TFI model

Better behaviour than non equivariant model, absence of Barren Plateaus

Trainability limited by noise

Outlook:

Interplay between more representations
Links absence of barren plateaus with classical simulabilty! (Bad)
Smart initialisation strategies

Symmetry breaking

Rx

Ry

Rx

Ry

Ry

Rx

Ry
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Implementation: Twirling

Te(4) = o G‘ >_ R(9)AR(g)"

gelG



Implementation: Twirling

Ta(A Y R(g)AR(g)"
\G ot

Example for translation

\f A i N N
—{Rr4(0) N \f

DT-Ple— x-Xx x-Yaz.
/\ K =) i=1 =1

5
X
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Implementation: Twirling

Ta(A) = — Y R(g9)AR(g)"
\G\ o

Example for translation

\f A i N N
—{Rr4(0) N \f

DT-Ple— x-Xx x-3zz.
/\ K =7 =1 =1

5
X

[R(g), A] =0 — [R(g),e"] =0

22



Introduction: Invariance and Equivariance

Goal: Exploit structure, symmetries Example Reflection Rotation

Symmetries — Group Theory

Symmetry groups identified abstractly

gOg'EG, here D3 1 a r
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Introduction: Invariance and Equivariance

Goal: Exploit structure, symmetries Example Reflection Rotation

Symmetries — Group Theory

Symmetry groups identified abstractly

gOg'EG, here D3 1 a r

Representation R : G — Aut (V) R(g1)R(g2) = R(g1 0 g2)

In 2d data space Unitary representation - Dependent on Encoding!
For quantum states: Wigner Theorem
cos 60° sin 60° ) LI

Rp(r) = (— sin 60° cos 60°

g— U,

24



Extra: Parameter Shift Rule

PSR: 89k0(0) =r (C(e - %ek) — C(e — %ek))

Derivation: C(H) :<¢|U(9)TOAU(9) |¢> with G2 = 7”21
e = cos(rf) + isin(rf)

3Q

Plugging this in

C(6) =(w[U(6)'OU(6) |¢) =
= cos2(r0) (1|O|v) + sin®(r6) (1|
= a + bsin 2rf + ccos 2r6

G A €|¢) 2 sin(r0) cos(rf)Re(—i(y|— 0|¢>)

r r
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Extra: Dynamical Lie Algebra

L
If we build our circuits I I —160,G
from some generator set U(H) — 6 el
[=1

cAB _ oA+B+L1[AB]+5[X,[X,Y]+

We can bound accessible gates from generators by computing all nested
commutators: Dynamical Lie Algebra (DLA)

= ({iG1}1)Lie C 5u(2")
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Extra: Dynamical Lie Algebra

g = ({?G1}1)Lie € s5u(2")

Expressivity can be understood Information theoretically:
- A(noiseless) channel has maximum capacity — all outputs are equally likely

But DLA exponential scaling — Average Inner product exponentially decaying

Tr{Up(p)O |

Double-edged sword: Can exploit DLA to simulate classically

27



