

High Energy Phenomena in Relativistic Outflows VII HEPRO VII, Barcelona, July 2019

Multi-wavelength Properties of AGN Jets: some recent highlights

Luigi Costamante ASI - Scientific Research Unit

Blazars SED Sequence

Giommi & Padovani 1994,1995

Standard picture: balance acceleration/cooling

Ghisellini et al 1998-2013, Sikora et al 1994-2013

Jet axial distance (de-projected): z (pc)

Jet axial distance (de-projected): z (pc)

is it so?

Expected in FSRQ: no VHE detections, cutoff ~10-20 GeV

Test the EC(BLR) scenario in FSRQs

100 highest-significance Gamma-ray FSRQs in the 3LAC + 6 large-BLR cases

Fermi-LAT Data, PASS8, 7.3-years exposure

106 in total, 83 with L_{BLR} estimates

Costamante et al. 2018, MNRAS 477, 4749 (arXiv: 1804.06282)

Methodology

BLR spectrum

BBody (same as for EC) is a good approximation for attenuation shoulder

BLR at different ionization parameter

BLR absorption feature

NO evidence of BLR cut-offs !

Only I out of IO FSRQ compatible with significant BLR absorption

Sample 83 objects with LBLR estimate

For the brightest 20: difference High/Low state ?

No evidence of strong interaction with BLR photons

VHE-detected FSRQs: also in Low state

Alternatives ?

- 1. Much larger BLR (~100x) $\tau \propto 1/R_{\rm BLR}$
- 2. Shift γγ threshold by selecting angles ("Flattened BLR")

1. Energy density UBLR goes down 10-4

U_{BLR} becomes lower than any other radiation field —> EC(BLR) disfavoured

2. Shift threshold 5x (to ~100 GeV) $\rightarrow \vartheta \leq 30 \deg$ 30 $R_{diss} = Tan(\alpha)^* R_{BLR}$ $\geq 1.7 R_{BLR}$ Shift threshold ~2x 45° 2002 60° 45°

Alternatives?

- 1. Much larger BLR (~100x) $\tau \propto 1/R_{\rm BLR}$
- Shift γγ threshold by selecting angles ("Flattened BLR")

Both do NOT keep EC(BLR) viable

Two Caveats:

1) Long integration time (years)

2) Kinematics of the emission (localized dissipation vs moving blob)

Doppler effect: $\Delta R \simeq \Delta t_{obs} * \beta * \Gamma^2$

$$\begin{array}{ll} \Gamma = 10 \\ \Delta t_{obs} \ge 10^5 s \end{array} \implies \Delta R \ge 10^{17} cm \end{array}$$

 $\ensuremath{\mathbb{C}}$ 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

ON THE SPECTRAL SHAPE OF RADIATION DUE TO INVERSE COMPTON SCATTERING CLOSE TO THE MAXIMUM CUTOFF

E. LEFA^{1,3}, S. R. KELNER¹, AND F. A. AHARONIAN^{1,2} ¹ Max-Planck-Institut für Kernphysik, P.O. Box 103980, 69029 Heidelberg, Germany; eva.lefa@mpi-hd.mpg.de ² Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland *Received 2012 March 10; accepted 2012 May 11; published 2012 June 26*

$$N_e \propto E^{-p} exp(-(E/E_c)^{\beta})$$

 $\beta_{synch} = \frac{\beta}{\beta + 2}$

 $\begin{array}{c} {\bf Table \ 1} \\ {\rm exponential \ cut-off \ index \ for \ Compton \ spectrum} \end{array}$

electron index	β	β	$\beta ightarrow \infty$	$\beta \to \infty$		
scattering regime	Thomson	Klein-Nishina	Thomson	Klein-Nishina		
monochromatic photons	$\beta/2$	β	$\beta ightarrow \infty$	$\beta \to \infty$		
Planckian photons	$\beta/(\beta+2)$	β	1	$\beta \to \infty$		
synchrotron photons	$\beta/(\beta+4)$	β	1	$\beta \to \infty$		

For $\dot{\gamma} \propto \gamma^2 \quad \beta \simeq 2$

See also: Romoli et al. 2017 Zargaryan poster on 3C279

3C 454.3 can be easily detectable at VHE !

HBL-like flare !

FSRQ/LBL can become HBL in gamma-rays !

HBL-like spectra in LBL/IBL

BL Lac

TXS 0506+056

Padovani et al. 2018

TXS 0506+056

All Collaborations, Science 2018

Warning on unwarranted connections...

All Collaborations, Science 2018

TXS 0506+056

Ultra-fast Variability ($\leq R_s/c$)

see Maxim's talk !

HBL

FSRQ

Aharonian et al. (HESS coll) 2007

Aleksic et al. 2011 (MAGIC coll)

 $R/R_q \simeq 0.04$

BL Lac (IBL/LBL)

3C 279 in 2015

[Minutes since 2015-June-16 02:00:00 (UT)]

LAT Coll. 2016

Radio Galaxies

 $\tau_0 = r_{\rm g}/c \approx 5 \times 10^2 M_8 \, {\rm s}.$

M87

$$t_{var} \sim 2 - 4 \tau_0$$

Fig. 4. Light curve of IC 310 observed with the MAGIC telescopes on the night of 12/13 November 2012, above 300 GeV. As a flux reference, the two gray lines indicate levels of 1 and 5 times the flux level of the Crab Nebula, respectively. The precursor flare (MJD 56243.972-56243.994) has been fitted with a Gaussian distribution. Vertical error bars show 1 SD statistical uncertainity. Horizontal error bars show the bin widths.

Aleksic et al. (MAGIC coll) 2014

$$t_{var} \sim 0.2 - 0.5 \ \tau_0$$

Extreme-TeV BL Lacs

Intrinsic $\Gamma_{VHE} < 2$ (typically 1.5-1.7), with any EBL intensity (even lowest one).

 \Rightarrow **"Compton" peak** ≥ **3-10 TeV** Numbers are 9/34 (TeVCAT) ~ 1/4 of all HBL

Costamante et al. 2018

NuSTAR-Swift observations

Costamante et al. 2018

Source	γ_0	n_0	γ_1	$\gamma_{ m b}$	γ_2	n_1	n_2	В	K	R	δ	$U_{\rm e}/U_{\rm B}$
[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
1ES 0229+200 a	_	-	100	1.1×10^6	2×10^7	1.4	3.35	0.002	6	0.8	50	1.7×10^5
1ES 0229+200 b	-	-	2×10^4	1.5×10^6	2×10^7	2.0	3.4	0.002	10^{3}	2.1	50	2.0×10^4
1ES 0347-121 a	-	-	100	7.5×10^5	1.8×10^7	1.7	3.8	0.0015	1.2×10^2	1.2	60	1.5×10^5
1ES 0347-121 b	-	-	3×10^3	7.5×10^5	1.8×10^7	2.0	3.8	0.0015	8×10^2	2.5	60	3.4×10^4
1ES 0414+009 a	10	1.7	1×10^4	10^{5}	10^{6}	3.0	4.6	0.3	8×10^6	2.1	20	0.5
1ES 0414+009 b	-	-	3×10^4	5×10^5	3×10^6	2.0	4.3	0.0025	$1.6 imes 10^2$	6.5	60	9.3×10^2
RGB J0710+591	-	-	100	6×10^5	10^{7}	1.7	3.8	0.011	1.2×10^2	0.92	30	2.7×10^3
1ES 1101-232 a	-	-	3.5×10^4	1.1×10^6	6×10^6	2.2	4.75	0.0035	$7.0 imes 10^3$	2.5	60	2.4×10^3
1ES 1101-232 b	-	-	1.5×10^4	9.5×10^5	4×10^6	2.2	4.75	0.005	2.4×10^3	3.8	50	6.0×10^2
1ES 1218+304	100	1.3	3×10^4	10^{6}	4×10^6	2.85	4.2	0.0035	$1.2 imes 10^7$	3.5	50	4.5×10^3

Costamante et al. 2018, models by F. Tavecchio

SSC can work but: 1) dropping one zone (no fit below UV)
 2) strongly out of equipartition (by 10³ to 10⁶)
 3) extremely low radiative efficiency

Super-Luminal Motion

MOJAVE. XVII. KINEMATICS & PARENT POPULATION

Mkn 421

Recollimation Shock

X-Ray SWIFT stacked lightcurves of 6 flares

 $\beta_{app} \simeq 45 \pm 4$

Hervet+ 19

Recollimation Shock

Image Credit: bbc.com

Take-home messages:

1) EC as we know it (BLR) does <u>not</u> work ! (IR ok)

- ⇒ FSRQ gamma-ray spectrum mostly intrinsic (particle distribution)
- \Rightarrow new diagnostic possibilities (e.g. Lefa et al 2014)
- \Rightarrow CTA sky should be much richer of FSRQ

2) SSC unrealistic for *Extreme-TeV* BL Lacs?

- \Rightarrow unrealistic parameters ? (B~mG, low eff., no equipartition, no SED)
- \Rightarrow still not extreme accelerators (like Crab etc), missing ?

3) Ultra-fast variability is characteristics of AGN jets (all types of RG/blazar)

4) In gamma-rays, lot of HSP-LSP interchanges

back-up slides

What about the Gamma-BLR connection then ?

What about the Jet-Accretion connection then ?

BLR acts as proxy of the disk, does not affect Jet radiation

NOTE: Fermi does <u>NOT</u> see all type of Blazars misses at the two ends of SED sequence

