

Lorenzo Amati (INAF – OAS Bologna) on behalf of the THESEUS international collaboration

http://www.isdc.unige.ch/theseus/ Amati et al. 2017 (Adv.Sp.Res., arXiv:1710.04638) Stratta et al. 2017 (Adv.Sp.Res., arXiv:1712.08153)

HEPRO VII

HIGH ENERGY PHENOMENA IN RELATIVISTIC OUTFLOWS VII

BARCELONA, 9-12 JULY 2019

WORKSHOP 2017

THESEUS mission design and science objectives Probing the Early Universe with GRBs Multi-messenger and time domain Astrophysics The transient high energy sky Synergy with next generation large facilities (E-ELT, SKA, CTA, ATHENA, GW and neutrino detectors)

INAF - Astronomical Observatory of Capodimonte Naples, Italy 5-6 October 2017

Science Organizing Committee: L. Amati (INAF-IASF Bologna, IT, CHAIR) M: Della Valle (INAF-OA Capodimonte, IT, co-cha D. Goiz (CEA Saclay, FR; co-chair) F. Oltricin (Univ. Leicester, UK; co-chair) E. Bozzo (Univ. Geneva, CH; co-chair) C. Taruzer (Univ. Tubingen DE: co-chair) Local Organizing Committe: R. Aiello (INAF-OA Capodimute, 17) M. T. Botticello (INAF-OA Capodimonte, 17) E. Bozzo (Univ. Geneva, CH) R. Cozzolino (INAF-OA Capodimonte, 17) G. Cuccaro (INAF-OA Capodimonte, 17) G. Cuccaro (INAF-OA Capodimonte, 17)

www.isdc.unige.ch/theseus/workshop2017-programme.html Proceedings preprints on the arXiv in early February (Mem.SAlt, Vol. 89 – N.1 - 2018)

Probing the Early Universe with GRBs Multi-messenger and time domain Astrophysics The transient high energy sky Synergy with next generation large facilities (E-ELT, SKA, CTA, ATHENA, GW and neutrino detectors)

THESEUS

Transient High Energy Sky and Early Universe Surveyor

Lead Proposer (ESA/M5): Lorenzo Amati (INAF – OAS Bologna, Italy)

Coordinators (ESA/M5): Lorenzo Amati, Paul O'Brien (Univ. Leicester, UK), Diego Gotz (CEA-Paris, France), C. Tenzer (Univ. Tuebingen, D), E. Bozzo (Univ. Genève, CH)

Payload consortium: Italy, UK, France, Germany, Switzerland, Spain, Poland, Czech Republic, Ireland, Hungary, Slovenia, ESA

Interested international partners: USA, China, Brazil

May 2018: THESEUS selected by ESA for M5 Phase 0/A study

Activity	Date	
Phase 0 kick-off	June 2018	
Phase 0 completed (EnVision, SPICA and THESEUS)	End 2018	
ITT for Phase A industrial studies February		
Phase A industrial kick-off	June 2019	
Mission Selection Review (technical and programmatic review for the three mission candidates)	Comleted by May 2021	
SPC selection of M5 mission	June 2021	
Phase B1 kick-off for the selected M5 mission	December 2021	
Mission Adoption Review (for the selected M5 mission)	March 2024	
SPC adoption of M5 mission	June 2024	
Phase B2/C/D kick-off	Q1 2025	
Launch	2032	

Smooth CDF study, successful MDR -> Phase A
 Efficient and positive interaction between ESA and consortium

Shedding light on the early Universe with GRBs

Because of their huge luminosities, mostly emitted in the X and gamma-rays, their redshift distribution extending at least to z ~9 and their association with explosive death of massive stars and star forming regions, GRBs unique and powerful tools for are investigating the early Universe: SFR evolution, physics of re-ionization, galaxies metallicity evolution and luminosity function, first generation (pop III) stars

GRBs in Cosmological Context

Lamb and Reichart (2000)

A statistical sample of high-z GRBs can provide fundamental information:

- measure independently the cosmic star-formation rate, even beyond the limits of current and future galaxy surveys
- directly (or indirectly) detect the first population of stars (pop III)

• the number density and properties of **low-mass galaxies**

Robertson&Ellis12

Even JWST and ELTs surveys will be not able to probe the faint end of the galaxy Luminosity Function at high redshifts (z>6-8)

- the neutral hydrogen fraction
- the escape fraction of UV photons from high-z galaxies
- the early metallicity of the ISM and IGM and its evolution

Abundances, HI, dust, dynamics etc. even for very faint hosts. E.g. GRB 050730: faint host (R>28.5), but z=3.97, [Fe/H]=-2 and low dust, from afterglow spectrum (Chen et al. 2005; Starling et al. 2005).

• the neutral hydrogen fraction

Exploring the multi-messenger transient sky

❑ Locate and identify the electromagnetic counterparts to sources of gravitational radiation and neutrinos, which may be routinely detected in the late '20s / early '30s by next generation facilities like aLIGO/aVirgo, eLISA, ET, or Km3NET;

- Provide real-time triggers and accurate (~1 arcmin within a few seconds; ~1" within a few minutes) high-energy transients for follow-up with next-generation optical-NIR (E-ELT, JWST if still operating), radio (SKA), X-rays (ATHENA), TeV (CTA) telescopes; synergy with LSST
- Provide a fundamental step forward in the comprehension of the physics of various classes of transients and fill the present gap in the discovery space of new classes of transients events

LIGO, Virgo, and partners make first detection of gravitational waves and light from colliding neutron stars

LIGO, Virgo, and partners make first detection of gravitational waves and light from colliding neutron stars

Lightcurve from Fermi/GBM (50 - 300 keV)

THESEUS:

- ✓ short GRB detection over large FOV with arcmin localization
- Kilonova detection, arcsec localization and characterization
- Possible detection
 of weaker isotropic
 X-ray emission

THESEUS mission concept

Soft X-ray Imager (SXI): a set of four sensitive lobster-eye telescopes observing in 0.3 - 5 keV band, total FOV of ~1sr with source location accuracy 0.5-1';

❑ X-Gamma rays Imaging Spectrometer (XGIS,): 3 coded-mask X-gamma ray cameras using bars of Silicon diodes coupled with CsI crystal scintillators observing in 2 keV – 10 MeV band, a FOV of ~2-4 sr, overlapping the SXI, with ~5' IRT GRB location accuracy in 2-30 (150) keV

InfraRed Telescope (IRT): a 0.7m class IR telescope observing in the 0.7 – 1.8 μm band, providing a 10'x10' FOV, with both imaging and moderate resolution spectroscopy capabilities (-> redshift)

LEO (< 5°, ~600 km) Rapid slewing bus Prompt downlink

THESEUS mission concept: ESA study

37°

122°

□ THESEUS will have the ideal combination of instrumentation and mission profile for detecting all types of GRBs (long, short/hard, weak/soft, high-redshift), localizing them from a few arcmin down to arsec and measure the redshift for a large fraction of them

Shedding light on the early Universe with GRBs

Redshift

THESEUS	All	z > 5	z > 8	z > 10
GRB#/yr				
Detections	387 - 870	25 - 60	4 - 10	2 - 4
Photometric z		25 - 60	4 - 10	2 - 4
Spectroscopic z	156 - 350	10 - 20	1 - 3	0.5 - 1

Star formation history, primordial galaxies

Neutral fraction of IGM, ionizing radiation escape fraction

z=8.2 simulated ELT afterglow spectrum

GRB accurate localization and NIR, Xray, Gamma-ray characterization, <u>redshift</u>

THESEUS SYNERGIES

Cosmic

chemical

evolution,

Pop III

□ THESEUS will also detect and localize down to 0.5-1 arcmin the soft X-ray short/long GRB afterglows, of NS-NS mergers and of many classes of galactic and extra-galactic transients

 For several of these sources, THESEUS/IRT may provide detection and study of associated NIR emission, location within 1 arcsec and redshift

GW/multi-messenger and time-domain astrophysics

GW transient sources that will be monitored by THESEUS include:

NS-NS / NS-BH mergers:

- collimated EM emission from short GRBs and their afterglows (rate up to 20/yr for 3G GW detectors as Einstein Telescope)
- Optical/NIR and soft X-ray <u>isotropic</u> emissions from macronovae, off-axis afterglows and, for NS-NS, from newly born ms magnetar spindown (rate of GW detectable NS-NS or NS-BH systems, i.e. dozens-hundreds/yr)
- Core collapse of massive stars: Long GRBs, LLGRBs, ccSNe (much more uncertain predictions in GW energy output, possible rate of ~1/yr)
- □ Flares from isolated NSs: Soft Gamma Repeaters (although GW energy content is ~0.01%-1% of EM counterpart)

GW/multi-messenger and time-domain astrophysics

GW transient sources that will be monitored by THESEUS include **NS-NS / NS-BH mergers**:

- collimated on-axis and off-axis prompt gamma-ray emission from short GRBs
- Optical/NIR and soft X-ray <u>isotropic</u> emissions from kilonovae, off-axis afterglows and, for NS-NS, from newly born ms magnetar spindown

Promptly and accurately localizing e.m. counterparts to GW events with THESEUS

Detection, study and arcsecond localization of afterglow and kilonova emission from shortGRB/GW events with THESEUS/IRT

Precise localization is mandatory to activate large ground-based telescopes as VLT or ELT from which detailed spectral analysis will reveal the intrinsic nature of these newly discovered phenomena

Promptly and accurately localizing e.m. counterparts to GW events with THESEUS

THESEUS measurements + sinergy with large e.m. facilities -> substantial improvment of redshift estimate for e.m. counterparts of GW sources -> cosmology

Investigating dark energy with a statistical sample of GW + e.m. (Sathyaprakash et al. 2019)

NS-BH/NS-NS merger physics/host galaxy identification/formation history/kilonova identification

r-process element chemical abundances

Localization of GW/neutrino gamma-ray or X-ray transient sources NIR, X-ray, Gamma-ray characterization

Transient sources

Accretion

physics

LSST

□ Time-domain astronomy and GRB physics _

- survey capabilities of transient phenomena similar to the Large Synoptic Survey Telescope (LSST) in the optical: a remarkable scientific sinergy can be anticipated.
- substantially increased detection rate and characterization of subenergetic GRBs and X-Ray Flashes;
- unprecedented insights in the physics and progenitors of GRBs and their connection with peculiar core-collapse Sne;

Absorption features: the case of GRB990705 (edge at 3.8 keV -> redshifted neutral iron k-edge -> z = 0.85 -> confirmed by host galaxy spectroscopy: redshift estimate through X-ray spectroscopy (need energy resolution < ~1 keV in X-rays)

BeppoSAX WFC + GRBM (Amati et al. 2000) THESEUS SXI + XGIS (Nava et al. 2018)

measuring cosmological parameters with GRBs

measuring cosmological parameters with GRBs

THESEUS Core Science is based on two pillars:

- probe the physical properties of the early Universe, by discovering and exploiting the population of high redshift GRBs.
- provide an unprecedented deep monitoring of the soft X-ray transient Universe, providing a fundamental contribution to multi-messenger and time domain astrophysics in the early 2030s (synergy with aLIGO/aVirgo, eLISA, ET, Km3NET and EM facilities e.g., LSST, E-ELT, SKA, CTA, ATHENA).

• THESEUS Observatory Science includes:

- study of thousands of faint to bright X-ray sources by exploiting the unique simultaneous availability of broad band X-ray and NIR observations
- provide a flexible follow-up observatory for fast transient events with multi-wavelength ToO capabilities and guest-observer programmes.

In summary

- THESEUS, submitted to ESA/M5 by a large European collaboration with strong interest by international partners (e.g., US) will fully exploit GRBs as powerful and unique tools to investigate the early Universe and will provide us with unprecedented clues to GRB physics and sub-classes.
- THESEUS will also play a fundamental role for GW/multi-messenger and time domain astrophysics at the end of next decade, also by providing a flexible follow-up observatory for fast transient events with multiwavelength ToO capabilities and guest-observer programmes
- THESEUS is a unique occasion for fully exploiting the European and Italian leadership in time-domain and multi-messenger astrophysics and in key-enabling technologies
- THESEUS observations will impact on several fields of astrophysics, cosmology and fundamental physics and will enhance importantly the scientific return of next generation multi messenger (aLIGO/aVirgo, LISA, ET, or Km3NET;) and e.m. facilities (e.g., LSST, E-ELT, SKA, CTA, ATHENA)
- Call for participating THESEUS scientific WGs will be issued very soon; THESEUS science session at EWASS 19 in Lyon; Theseus Consortium meeting in Bologna on July 3-5; THESEUS International Conference in Malaga on 12-15 May 2020

Back-up slides

Shedding light on the early Universe with GRBs

z=8.2 simulated E-ELT afterglow spectra

Mission profile and budgets

Launch vehicle	VEGA-C (backup Ariane62)			
Launch date	2032 (night launch)			
Lifetime	Nominal 3 years (consumables for			
Orbit	Circular LEO	Sun Shield with Solar array SXI Units		
Altitude	600 km			
Inclination	5.4°	IRT telescope		
Ground stations	Malindi (backup Kourou) VHF SVOM network	XGIS		
Delta-V	225.8 m/s	SXI Units		
Re-entry	Controlled re-entry (4 burns)	olar		
Mass	Dry mass w/ margin 1504 kg Wet mass 1702 kg Total (wet + adapter) 1697 kg			
Dimensions	Launch conf.: 4.23 m x 3.02 m Deployed conf.: 4.23 m x 4.40 m			
Payload	1x InfraRed Telescope (IRT) 2x X-Gamma-rays Imaging Spect 4x Soft X-ray Imager (SXI) 2x Radiation monitors			

THESEUS payload consortium: contributions

- Italy L.P. / project office, XGIS, Malindi ground station, Trigger Broadcasting Unit
- **UK** SXI (coord., optics, cal., s/w)
- **France** IRT (coord.,camera, cal., s/w), Theseus Burst Alert Ground Segment
- **Germany (with Poland and Denmark)** I-DHUs and Power Supply Units (PSUs)
- Switzerland: SDC (s/w, data processing, pipelines, quick-look) + IRT filter wheel
- Spain: XGIS coded mask, +... (IRT detectors / optics? SXI focal plane structure / optics....?)
- **ESA P/L contribution:** IRT telescope (including cooler), SXI detectors
- Other contributions: Spain (XGIS coded mask, SXI focal plane assembly, IRT), Belgium (SXI integration and tests), Czech Rep. (mechanical structures and thermal control of SXI)
- **Possible minor contributions: Ireland** (XGIS detectors, IRT on-board s/w), **Hungary** (spacecraft interface simulator, I-DHU, IRT calib.), **Slovenia** (X-band)
- Possible international non-enabling contributions: USA: (XGIS sim. + tests, TDRSS), Brazil: Alcantara ground station, China (SXI, XGIS)
THESEUS responsibilities product tree

THESEUS consortium: contact persons

THESEUS contact persons

Coordination team

Name and Surname	Country	Institute
Lorenzo Amati (Mission PI, lead Scientist)	Italy	INAF-OAS Bologna
Paul O'Brien	United Kingdom	Leicester University
Diego Goetz	France	CEA/Saclay
Andrea Santangelo	Germany	IAAT
Enrico Bozzo (Project configuration control)	Switzerland	University of Geneva

Payload and science data center

Element	Name and Surname	Institute	Country
SXI	Paul O'Brien and Ian Hutchinson	University of Leicester	United Kingdom
XGIS	Lorenzo Amati and Claudio Labanti	INAF-OAS Bologna	Italy
IRT	Diego Goetz and Stephane Basa	CEA, Saclay	France
I-DHU	Andrea Santangelo and Chris Tenzer	IAAT, Tuebingen	Germany
SDC	Stephane Paltani and Enrico Bozzo	University of Geneva	Switzerland

Guido Parissenti (System ewngineering coordination)	Italy	GPAP

+ science key persons in the TSST and instruments leads and key persons in the SEWG

THESEUS teams: ESA

L. Colangeli (ESA, Head of Science Coordination Office), P. Falkner (ESA, Head of Mission Studies Office

ESA study team

Name and Surname	Role	Institute	Country
Philippe Gondoin	Study manager	ESA/ESTEC	Netherlands
Jonan Larranaga	System engineer	ESA/ESTEC	Netherlands
Thibaut Prod'homme	Payload manager	ESA/ESTEC	Netherlands
Tim Oosterbroek	Payload system engineer	ESA/ESAC	Spain
Matteo Guainazzi	Study scientist	ESA/ESTEC	Netherlands
Isabel Escudero Sanz	Optics expert	ESA/ESTEC	Netherlands
Guillaume Belanger	Operations expert	ESA/ESAC	Spain

THESEUS Science Study Team

(leadusthentist)	Country	Institute
Amati Lorenzo (Lead scientist)	Italy	INAF - OAS Bologna
Basa Stephane	France	LAM
Caballero-Garcia Maria Dolores	Spain	IAA-CSIC
Christensen Lise	Denmark	University of Copenhagen
Götz Diego	France	CEA - Saclay / Irfu / SAp
Hanlon Lorraine	Ireland	UCD
O'Brien Paul	United Kingdom	University of Leicester
Paltani Stephane	Switzerland	University of Geneva
Santangelo Andrea	Germany	IAAT, University of Tuebingen
Stratta Giulia	Italy	INAF - OAS Bologna
Tanvir Nial	United Kingdom	University of Leicester

THESEUS consortium science: 6 WGs, > 200 contributing scientists

http://www.isdc.unige.ch/theseus/

1. Exploring the Early Universe with GRBs		
Surname and Name	Country	Institute
Tanvir Nial	United Kingdom	University of Leicester

2. Gravitational waves and multi-messanger Astrophysics		
Surname and Name	Country	Institute
Stratta Giulia	Italy	Urbino University

3. Exploring the time domain Universe		
Surname and Name	Country	Institute
Osborne Julian	United Kingdom	University of Leicester

4. Sinergy with other electromagnetic facilities (including LSST)		
Surname and Name	Country	Institute
Rosati Piero	Italy	University of Ferrara

5. Scientific requirements		
Surname and Name	Country	Institute
Ghirlanda Giancarlo	Italy	INAF-OA Brera

6. The IRT as a flexible Guest Observer IR observatory		
Surname and Name	Country	Institute
Blain Andrew	United Kingdom	University of Leicester

The THESEUS space mission concept: science case, design and expected performances

L. Amati^{a,*}, P. O'Brien^b, D. Götz^c, E. Bozzo^d, C. Tenzer^e, F. Frontera^{f,g}, G. Ghirlanda^h C. Labanti^a, J.P. Osborne^b, G. Strattaⁱ, N. Tanvir^j, R. Willingale^b, P. Attina^k, R. Campana¹ A.J. Castro-Tirado^m, C. Continiⁿ, F. Fuschino^a, A. Gomboc^o, R. Hudec^{p,q}, P. Orleanski^r E. Renotte^s, T. Rodic¹, Z. Bagoly^u, A. Blain^b, P. Callanan^v, S. Covino^w, A. Ferrara^{x,y} E. Le Floch^z, M. Marisaldi^{aa}, S. Mereghetti^{ab}, P. Rosati^{ac}, A. Vacchi^{ad}, P. D'Avanzo^h, P. Giommi^{ae}, S. Piranomonte^{af}, L. Piro^{ag}, V. Reglero^{ah}, A. Rossi^a, A. Santangelo^e, R. Salvaterra^{ai}, G. Tagliaferri^h, S. Vergani^{aj,ak}, S. Vinciguerra^{al}, M. Briggs^{am}, E. Campolongoⁿ, R. Ciolfi^{an,ao}, V. Connaughton^{ap}, B. Cordier^c, B. Morelliⁿ, M. Orlandini^{aq}, C. Adami^{ar}, A. Argan^{ag}, J.-L. Atteia^{as}, N. Auricchio^a, L. Balazs^{at}, G. Baldazzi^{au,av}, S. Basa^{ar}, R. Basak^{aw,ax}, P. Bellutti^{ay}, M.G. Bernardini^h, G. Bertuccio^{az,ba} J. Braga^{bb}, M. Branchesi^{bc,bd}, S. Brandt^{be}, E. Brocato^{bf}, C. Budtz-Jorgensen^{be}, A. Bulgarelli bg, L. Burderi bh, J. Camp bi, S. Capozziello bj, J. Caruana bk,bl, P. Casella B. Cenko^{bm,bn}, P. Chardonnet^{bo,bp}, B. Ciardi^{bq}, S. Colafrancesco^{br}, M.G. Dainotti^{bs,bt,bu} V. D'Elia by,af, D. De Martino bw, M. De Pasquale bx, E. Del Monte ag, M. Della Valle by,bz, A. Drago^{ca}, Y. Evangelista^{ag}, M. Feroci^{ag}, F. Finelli^a, M. Fiorini^{cb}, J. Fynbo^{cc}, A. Gal-Yam^{ed}, B. Gendre^{ce,ef}, G. Ghisellini^h, A. Grado^{bw}, C. Guidorzi^f, M. Hafizi^e L. Hanlon^{ch}, J. Hjorth^{ce}, L. Izzo^{ci}, L. Kiss^{cj}, P. Kumar^{ck}, I. Kuvvetli^{be}, M. Lavagna^{cl} T. Li^{cm}, F. Longo^{en,ad}, M. Lyutikov^{co,cp}, U. Maio^{eq,cr}, E. Maiorano^{aa}, P. Malcovati^{cs}, D. Malesani^{cc}, R. Margutti^{ct}, A. Martin-Carrillo^{ch}, N. Masetti^{aq,cu}, S. McBreen^{cv} R. Mignani^{ai,cw}, G. Morgante^{aq}, C. Mundell^{cx}, H.U. Nargaard-Nielsen^{be}, L. Nicastro^{cy} E. Palazzi^{aq}, S. Paltani^d, F. Panessa^{ag}, G. Pareschi^h, A. Pe'er^v, A.V. Penacchioni^{cz,da,db} E. Pian^x, E. Piedipalumbo^{dc,dd}, T. Piran^{de}, G. Rauw^{df}, M. Razzano^{dg}, A. Read^b L. Rezzolla dh,di, P. Romano dj, R. Ruffini dk,dl, S. Savaglio dm, V. Sguera a, P. Schady dn, W. Skidmore^{do}, L. Song^{dp}, E. Stanway^{dq}, R. Starling^j, M. Topinka^{dr}, E. Troja^{ds,dt},

THESEUS: A key space mission concept for Multi-Messenger Astrophysics

G. Stratta ^{a,b,l,s}, R. Ciolfi^{c,d}, L. Amati^b, E. Bozzo^c, G. Ghirlanda^f, E. Maiorano^b, L. Nicastro^b, A. Rossi^b, S. Vinciguerra^g, F. Frontera^{h,b}, D. Götz¹, C. Guidorzi^h, P. O'Brien¹, J.P. Osborne^j, N. Tanvin^s, M. Branchesi^{m,j}, E. Brocato^s, M.G. Dainotti^{a,h,Jaw} M. De Pasquale^o, A. Grado^p, J. Greiner⁴, F. Longo^{1,ch}, U. Maio^{1,a}, D. Mereghetti^v, R. Mignani^{v,a}, S. Piranomonte^s, L. Rezzolla^{5,c}, R. Salvaterra¹, R. Starling¹, S. Govino¹, P. D'Avanzo¹, V. D'Elia^{ars, A}, Drago^h, F. Fuschino^b, B. Gendre^{agathaf}, R. Hudce^{adad}, P. Jonker^{ah,ad}, C. Labanti^b, D. Malesani^{am}, C.G. Mundell^{an}, E. Pulazz¹^b, B. Patricelli^{an}, M. Razzano^{ao}, R. Campana^b, P. Rosati^b, T. Rodic^{ap}, D. Szécsi^{adad}, A. Stamerraⁱⁿ, M. van Putten^{as}, S. Vergani^{at,f}, B. Zhang^{ae}, M. Bernardini^{av}

*Università degli Studi di Urbins, Dipartimento Sevene Pare e Argivene, ets S. Chiano 27, 400%. Urbins, Italy *UNI-F, OLS Moderna, et is F. Goler VID, Bolegna, Italy *UNI-F, Dournatorio Atronomico di Padona, Fivolo dell'Oscernatorio 5, 15322 Padon, Italy *UNI-FDR. Termo Instituto for Fundamental Physics and Aphysicsus, ets dissumative (E-15832) Terms, Italy *Department of Atronomy, University of Genera, ets A. Elevisit B. (E-1200). Farity TIME F. Oscernatorio astromassica di Beresi, Va E. Bassidi B., Morta, LC (2-2007). English "Italy F. Oscernatorio astromassica di Beresi, Va E. Bassidi B., Morta, LC (2-2007). English "Italy F. Oscernatorio astromassica di Beresi, Va E. Bassidi B., Morta, LC (2-2007). English "Italy F. Oscernatorio astromassica di Beresi, Va E. Bassidi B., Morta, LC (2-2007). English "Italy F. Oscernatorio astromassica di Beresi, Va E. Bassidi B., Morta, LC (2-2007). English "Italy F. Oscernatorio astromassica di Beresi, Va E. Bassidi B., Morta, LC (2-2007). English "Italy F. Oscernatorio astromassica di Beresi, Va E. Bassidi B., Morta, LC (2-2007). English "Italy F. Oscernatorio astromassica di C. Università Presci Astrono, Frances "Italy Patrophysica and Atronomy and Leicente Likity Ferth Officiane Viberration, University Road, Leicente LE 174RI, United Kangdon "NUNCE: Department of Physics and Atronomy and Leicente Hold 302. Stander Vibertins, Italy "Bogenement of Physics and Stroments, Taly Paraecson Ceigel, 7, 140100 Liquida, Italy "Bogenement of Atronomy and Bayee Stores, Bandal University, Poly Steen Farentins, Italy "Department of Physics, Kaloromout, Standard University, Revist, 21117 Bandad, Taly "Department of Atronomy and Bayee Stores, Revistanda University, Poly Steen Farentins, Italy "Attest Function for Attrophysics, Kalorowatte, Bardel Mark, Taly M. Handon, Casta "Department of Atronomy, and Space Stores, Rathad University, Polyne, LH117 Bandad, Taly "Attest Function for Attrophysics, Radio Stores, Bardel Bardel Steensot, Italy Steensot, Taly "Attest Functine for Attrophysic

EWASS 2019

24 - 28 June Lyon, France

24-25 June 2019

EUROPEAN WEEK OF ASTRONOMY & SPACE SCIENCE

EWASS 2019

Welcome &	& News
-----------	--------

About EWASS

Organisers

Dates

Programme

Abstract Submission

Registration

EWASS Poster

Sponsorship & Exhibition Kit

Sponsors & Exhibitors

Contact

Cosmology and multi-messenger astrophysics with Gamma-Ray Bursts

News: December 3rd: potential invited speakers are being contacted, list will be announced soon.

Aims and scope

Symposium S4

Gamma-Ray Bursts (GRBs) are the most extreme and powerful emissions of electromagnetic radiation in the Universe. Since their discovery in the late '60s, they constitute one of the most fascinating and mysterious phenomena for modern science, with strong implications for several fields of astrophysics and fundamental physics. This special session will focus on the key-role of GRBs for cosmology and multi-messenger astrophysics. Indeed, the huge luminosity, the redshift distribution extending at least up to z~10 and the association with the explosive death of very massive stars make long GRBs (i.e., those lasting up to a few minutes) potentially extremely powerful cosmological probes (geometry and expansion rate of space-time, "dark energy", early Universe). At the same time, short GRBs (lasting no more than ~1-2s) are the most prominent electromagnetic signature of gravitational-wave sources like NS-NS and NS-BH merging events, and both long/short GRBs are expected to be associated with neutrino emission.

THESEUS: straightforward synergies with ET

- Detection, accurate location (from few arcmin to few arcsec) and possibly redshift measurement (also through other e.m. facilities) and m-w characterization of the e.m. counterpart (short GRB, soft X-ray emission, kilonova) of several tens of GW signals from NS-NS and NS-BH (e.g, NS-NS, KN and GRB physics; use of GW signals as standard sirens for cosmology (H0, dark energy,...)
- Investigating SFR cosmic history up to early Universe and getting clues to pop III stars with two complementary methods (THESEUS through high-z long GRBs, ET through population and properties of BHs upt to very high z)
- GW signals form CC-Sne (THESEUS is likely to unveal the bulk of the population of "local", soft and sub-energetic GRBs produced by peculiar CC-Sne) and SGRs

Launch vehicle	VEGA-C (backup Ariane62)		
Launch date	2032 (night launch)		
Lifetime	Nominal 3 years (consumables for 2 more years)		
Orbit	Circular LEO		
Altitude	600 km		
Inclination	5.4°		
Ground stations	Malindi (backup Kourou) VHF SVOM network		
Delta-V	225.8 m/s		
Re-entry	Controlled re-entry (4 burns)	D ai	
Mass	Dry mass w/ margin 1504 kg Wet mass 1702 kg Total (wet + adapter) 1697 kg		
Dimensions	Launch conf.: 4.23 m x 3.02 m x 2.35 m Deployed conf.: 4.23 m x 4.40 m x 2.35 m		
Payload	1x InfraRed Telescope (IRT) 2x X-Gamma-rays Imaging Spectrometer (XGIS) 4x Soft X-ray Imager (SXI) 2x Radiation monitors		

Shedding light on the early Universe with GRBs

z=8.2 simulated E-ELT afterglow spectra

The Soft X-ray Imager (SXI) – led by UK

4 DUs, each has a 31 x 26 degree FoV

Energy band (keV)	0.3-5
Telescope type:	Lobster eye
Optics aperture (mm2)	320x320
Optics configuration	8x8 square pore MCPs
MCP size (mm2)	40x40
Focal length (mm)	300
Focal plane shape	spherical
Focal plane detectors	CCD array
Size of each CCD (mm2)	81.2x67.7
Pixel size (µm)	18
Pixel Number	4510 x 3758 per CCD
Number of CCDs	4
Field of View (square deg)	~1sr
Angular accuracy (best, worst)	(<10, 105)
(arcsec)	
Power [W]	27,8
Mass [kg]	40

Table 4 :: SXI detector unit main physical characteristics

The X-Gamma-ray imaging spectrometer

The X-Gamma-ray imaging spectrometer

Figure 17: Sketch of the XGIS Unit.

Table 6: XGIS	` unit characteristics	vs energy range
---------------	------------------------	-----------------

Table 5: XGIS detector unit main physical characteristicsEnergy band2 keV - 20 MeV

Energy band	$2 \ keV - 20 \ MeV$
<i># detection plane modules</i>	4
# of detector pixel / module	32x32
pixel size (= mask element size)	5x5 mm
Low-energy detector (2-30 keV)	Silicon Drift Detector
	450 µm thick
High energy detector $(> 30 \text{ keV})$	CsI(Tl) (3 cm thick)
Discrimination Si/CsI(Tl) detection	Pulse shape analysis
Dimension [cm]	50x50x85
Power [W]	30,0
Mass [kg]	37.3

	2-30 keV	30-150 keV	>150 keV
Fully coded FOV	9 x 9 deg ²		
Half sens. FOV	50 x 50 deg ²	50 x 50 deg ² (FWHM)	
Total FOV	64 x 64 deg ²	85 x 85 deg² (FWZR)	2π sr
Ang. res	25 arcmin		
Source location accuracy	\sim 5 arcmin (for >6 σ source)		
Energy res	200 eV FWHM @ 6 keV	18 % FWHM @ 60 keV	6 % FWHM @ 500 keV
Timing res.	1 μsec	1 μsec	1 μsec
On axis useful area	$512 < cm^2$	1024 cm^2	1024 cm^2

ATHENA+

Follow-up of high-z GRB with large facilities

Optical/IR abs. X-ray spectroscopy of the progenitor environme spectroscopy of the host galaxy

z=8.2 simulated E-ELT afterglow spectra

30+ m class ELTs

XGIS detection unit (camera)

C. Labanti

XGIS detection plane module

Self standing Detection module made of 8x8 individual detectors, electronics, I/F

Top PCB with open windows for low energy X-ray radiation and pre-amp Front ASICs in the opposite side of the SDD

	Energy Band	FOV	Energy resolution	Peak eff. area	Source location	Operation
CGRO/BATSE	20–2000 keV	open	10 keV (100 keV)	$\sim 1700 \text{ cm}^2$	>1.7 deg	ended
Swift	15–150 keV	1.4 sr	7 keV (60 keV)	$\sim 2000 \text{ cm}^2$	1–4 arcmin	active
Fermi/GBM	8 keV – 40 MeV	open	10 keV (100 keV)	126 cm^2	>3 deg	active
Konus-WIND	20 keV – 15 MeV	open	10 keV at 100 keV	120 cm^2	_	active
BeppoSAX/WFC	2–28 keV	0.25 sr	1.2 keV (6 keV)	140cm^2	1 arcmin	ended
HETE-2/WXM	2–25 keV	0.8 sr	1.7 keV (6 keV)	350cm ²	1–3 arcmin	ended
THESEUS	0.3–20000 keV	1 - 1.4 sr	300 eV (6 keV)	1500 cm^2	0.5–1 arcmin	- 2032
SVOM	4 keV – 5 MeV	1.5 sr	2 keV (60 keV)	1000 cm^2	2–10 arcmin	- 2022

+ Infrared telescope and fast slewing !!!

The Italian contribution to THESEUS

- Theseus consortium coordination: INAF (Lead Proposer, project office)
- Science: INAF (Lead Scientist; OAS, IASF-MI, Oss. Brera, IAPS, IASF-PA, Oss. Napoli, Oss. Roma, ...), Universities (e.g., Univ. Ferrara, Pol. Milano, SNS Pisa, Univ. Federico II Napoli, Univ. Urbino, ...)
- XGIS (including radiation monitor): INAF (PI; OAS, IASF-MI, IAPS, IASF-PA, ...), Universities (Politecnico Milano, Univ. Pavia, Univ. Ferrara, Univ. Udine, FBK Trento
- **TBU** (Trigger Broadcasting Unit): **INAF**
- Malindi ground station: ASI (in-kind contribution)
- Industries: involvement already in Phase A (contrib. XGIS and TBU studies)
 ASI funding for Phase A study: ~500 KEuro (2019-2020)
 Co-funding from INAF + Universities: ~660 KEuro
 Likely further ESA funding for XGIS module prototyping: ~450 KEuro

Italian contribution: break-down

THESEUS: straightforward synergies with SKA and CTA

SKA: early Universe cosmology (pop III stars, cosmic re-ionization, first galaxies), GRBs and transients physics, multi-messenger astrophysics

CTA: GRB and transient physics, test of fundamental physics, multi-messenger astrophysics

THESEUS synergies Working Group: investigating Theseus-CTA and Theseus-SKA synergies

- ESA L2/L3 review: "The SSC strongly endorses the need to continue pursuing in the future the discovery of GRBs"
- THESEUS will be a really unique and superbly capable facility, one that will do amazing science on its own, but also will add huge value to the currently planned new photon and multi-messenger astrophysics infrastructures in the 2020s to > 2030s.

Table 2: Number of NS-NS (BNS) mergers expected to be detected in the next years by second- (2020+) and third- (2030+) generation GW detectors and the expected detection number of electromagnetic counterparts as short GRBs (collimated) and X-ray isotropic emitting counterparts (see §3.1 and 3.2) with THESEUS SXI and XGIS (see text for more details). BNS rate is a realistic estimate from Abadie et al. 2010 and Sathyaprakash et al. 2012 and the BNS range indicates the sky- and orbital inclination-averaged distance up to which GW detectors can detect a BNS with SNR = 8.

GW observations		THESEU	US XGIS/SXI joint G	GW+EM observations	
Epoch	GW detector	BNS range	BNS rate (yr ⁻¹)	XGIS/sGRB rate (yr ⁻¹)	SXI/X-ray isotropic counterpart rate (yr ⁻¹)
2020+	Second-generation (advanced LIGO, Advanced Virgo, India-LIGO, KAGRA)	~200 Mpc	~40*	~5-15	~1-3 (simultaneous) ~6-12 (+follow-up)
2030+	Second + Third-generation (e.g. ET, Cosmic Explorer)	~15-20 Gpc	>10000	~15-35	$\gtrsim 100$

* from Abadie et al. 2010a

□ THESEUS will also detect and localize down to 0.5-1 arcmin the soft X-ray short/long GRB afterglows, of NS-NS (BH) mergers and of many classes of galactic and extra-galactic transients

□ For several of these sources, THESEUS/IRT will provide detection and study of associated NIR emission, location within 1 arcsec and redshift

THESEUS payload consortium: contributions

- Italy L.P. / project office, XGIS, Malindi ground station, Trigger Broadcasting Unit
- **UK** SXI (coord., optics, cal., s/w)
- France IRT (coord.,camera, cal., s/w), Theseus Burst Alert Ground Segment
- **Germany (with Poland and Denmark)** I-DHUs and Power Supply Units (PSUs)
- Switzerland: SDC (s/w, data processing, pipelines, quick-look) + IRT filter wheel
- Spain: XGIS coded mask, +... (IRT detectors / optics? SXI focal plane structure / optics....?)
- **ESA P/L contribution:** IRT telescope (including cooler), SXI detectors
- Other contributions: Spain (XGIS coded mask, IRT), Belgium (SXI integration and tests), Czech Rep. (mechanical structures and thermal control of SXI)
- **Possible minor contributions: Ireland** (XGIS detectors, IRT on-board s/w), **Hungary** (spacecraft interface simulator, I-DHU, IRT calib.), **Slovenia** (X-band)
- **Possible international non-enabling contributions: USA:** (XGIS sim. + tests, TDRSS), **Brazil:** Alcantara ground station, **China** (SXI, XGIS)

THESEUS responsibilities product tree

THESEUS mission concept: ESA study

Further instruments design changes

- Slight down-sizing of IRT and XGIS required -> verify impact (see next talks)
- Change of IRT optics design -> advantages and disadvantages
- Impact of spacecraft pointing performances on IRT imaging and spectroscopy sensitivity
- SXI detectors: from CCD to CMOS ? -> impact (energy band, efficiency, ...)

Option 1: Ritchey-Chretien. On axis.

Interface at focus. EFL 5400mm.

Diffraction limited (in curved focal surface).

Option 2: Korsch. FoV off axis. Interface at exit pupil. Afocal.

Diffraction limited.

THESEUS CDF payload module concept

- Korsch FoV off-axis telescope
- Telescope mass compatible with Zerodur/CFRP or SiC
- M2 focus mechanism
- Spider supporting structures for M2 assembly
- 2x XGIS units
- Squared combined FoV for SXI
- Active thermal control with LHP (Propylene)
- Coarse star Trackers

THESEUS consortium science: 6 WGs, Mer

> 200 contributing scientists

http://www.isdc.unige.ch/theseus/

1. Exploring the Early Universe with GRBs			
Surname and Name	Country	Institute	
Tanvir Nial	United Kingdom	University of Leicester	

2. Gravitational waves and multi-messanger Astrophysics			
Surname and Name	Country	Institute	
Stratta Giulia	Italy	Urbino University	

3. Exploring the time domain Universe			
Surname and Name	Country	Institute	
Osborne Julian	United Kingdom	University of Leicester	

4. Sinergy with other electromagnetic facilities (including LSST)			
Surname and Name	Country	Institute	
Rosati Piero	Italy	University of Ferrara	

5. Scientific requirements			
Surname and Name	Country	Institute	
Ghirlanda Giancarlo	Italy	INAF-OA Brera	

6. The IRT as a flexible Guest Observer IR observatory					
Surname and Name	Country	Institute			
Blain Andrew	United Kingdom	University of Leicester			

Mem. S.A.It. Vol. 89, 179 © SAIt 2018

Synergies of THESEUS with the SKA: a brief report

S. Colafrancesco

School of Physics, University of Witwatersrand, Johannesburg, RSA e-mail: sergio.colafrancesco@wits.ac.za

Abstract. We present a short report on the main synergies between Theseus and SKA in the study of high-redshift transients and we summarize a few more aspects where Theseus and SKA can contribute to explore fundamental physics in the universe.

1.1. Blob-ology

Key words. Cosmology: early Universe Galaxies: high-redshift, Transients

1. Introduction

The Transient High Energy Sky and Early Universe Surveyor (THESEUS) is a space mission concept whose core science goals of THESEUS comprise the exploration of the cosmic dawn and re-ionization era through the prompt detection and characterization of transients up to high redshifts.

The Square Kilometer Array (SKA) has similar key science programs working in the very-low (70-350 MHz) to mid- (0.4-10 GHz) radio frequency range (for a comprehensive illustration of the SKA science topics and

This is mainly the case of the GRB (radio afterglows) population study.

The first moral we can get from this study is that the sensitivity of the SKA will allow to observe almost the complete population of GRBs, provided that a X/g-ray instrument (more sensitive than Swift) will be operational in the SKA era (e.g., Theseus) and provided a GRB localisation to a few arcsec resolution Burlon et al. (2015).

The second moral we can get is that once you have a relatively large sample of sparks

□ Shedding light on the early Universe with GRBs

z=8.2 simulated E-ELT afterglow spectra

Mission profile and budgets

FUNCTIONAL SUBSYSTEMS		Basic Mass (kg)	Margin	Margin (kg)	Current Mass (Kg)
SERVICE MODULE					
AOCS (gyro, RW, SAS, ST)		115,1	10%	11,5	126,6
PDHU + X BAND		31,4	10%	3,1	34,5
DATA HANDLING		24,4	5%	1,2	25,6
EPS (PCU, Battery, SA)		85 ,1	10%	<mark>8,</mark> 5	93,6
SYSTEM STRUCTURE		129,1	10%	12,9	142,0
PROPULSION		17,0	15%	2,5	19,5
THERMAL CONTROL (heaters+blankets)		14,2	10%	1,4	15,6
HARNESS		46,0	20%	9,2	55,2
Total Service Module Mass		462,3	11%	50,5	512,8
PAYLOAD MODULE					
SXI		100,0	20%	20,0	120,0
XGIS		93,0	20%	18,6	111,6
IRT		94,2	20%	18,8	116,0
i-DHU + i-DU + NGRM + TBU + harness (TBC)		23,1	20%	4,6	27,7
Total P/L Module Mass		310,3		62,1	375,3
Total Service Module Mass (kg)	512,8				
Total Payload Module Mass (kg)	375,3				
System level margin (20%)	177,6				
Dry Mass at launch (kg)	1065,6				
Propellant	100,0				
Launcher adapter	31,7				
Total mass at launch (kg)	1197.3				

- Launch with VEGA-C into LEO (< 5°, ~600 km)
- Spacecraft slewing capabilities (30° < 5 min)
- Prompt downlink options : WHF network (options: IRIDIUM network, ORBCOMM, NASA/TDRSS, ESA/EDRS)

THESEUS measurements + sinergy with large e.m. facilities -> substantial improvment of redshift estimate for e.m. counterparts of GW sources -> cosmology

Estimating H0 with GW170817A

□ Time-domain astronomy and GRB physics

- survey capabilities of transient phenomena similar to the Large Synoptic Survey Telescope (LSST) in the optical: a remarkable scientific sinergy can be anticipated.
- substantially increased detection rate and characterization of sub-energetic GRBs and X-Ray Flashes;
- unprecedented insights in the physics and progenitors of GRBs and their connection with peculiar core-collapse Sne;

Transient type	SXI rate		
Magnetars	40 day^{-1}		
SN shock breakout	4 yr^{-1}		
TDE	50 yr^{-1}		
AGN+Blazars	350 yr^{-1}		
Thermonuclear bursts	35 day ⁻¹		
Novae	250 yr^{-1}		
Dwarf novae	30 day^{-1}		
SFXTs	1000 yr^{-1}		
Stellar flares	400 yr^{-1}		
Stellar super flares	200 yr^{-1}		

- GW/multi-messenger time-domain astrophysics
- **GW transient sources that will be monitored by THESEUS** include **NS-NS / NS-BH mergers**:
 - collimated on-axis and off-axis prompt gamma-ray emission from short GRBs
 - Optical/NIR and soft X-ray <u>isotropic</u> emissions from kilonovae, off-axis afterglows and, for NS-NS, from newly born ms magnetar spindown

Promptly and accurately localizing e.m. counterparts to GW events with THESEUS

Promptly and accurately localizing e.m. counterparts to GW events with THESEUS

THESEUS payload consortium (M5)

- **ITALY** L.P. / project office, XGIS, Malindi antenna
- UK SXI (optics + detectors + calibration) + S/W (SXI pipeline and remote contribution to SDC)
- France IRT (coordination and IR camera, including cooler), ESA IRT optics + SXI CCDs
- Germany, Poland Data Processing Units (DPU) for both SXI and XGS, Power Supply Units (PSU)
- **Switzerland**: SDC (data archiving, AOs, + pipelines) + IRT focal plane assembly
- Other contributions: Spain (XGIS collimators), Belgium (SXI integration and tests), Czech Rep. (mechanical structures and thermal control of SXI), Ireland (IRT focal plane), Hungary (spacecraft interface simulator, PDHU, IRT calib.), Slovenia (X-band transponder, mobile ground station)
- International optional contributions: USA: (TDRSS, contrib. to XGS and IRT detectors), Brazil: Alcantara antenna, China (SXI, XGS), Japan ?
- Industrial partners: CGS (OHB group), GPAP
The Soft X-ray Imager (SXI)

Mass [kg

Table 4 : : SXI detector unit main physical characteristics

4 DUs, each has a 31 x 26 degree FoV

Energy band (keV)	0.3-5	
Telescope type:	Lobster eye	
Optics aperture (mm2)	320x320	
Optics configuration	8x8 square pore MCPs	
MCP size (mm2)	40x40	
Focal length (mm)	300	
Focal plane shape	spherical	
Focal plane detectors	CCD array	
Size of each CCD (mm2)	81.2x67.7	
Pixel size (µm)	18	
Pixel Number	4510 x 3758 per CCD	
Number of CCDs	4	
Field of View (square deg)	~1sr	
Angular accuracy (best, worst)	(<10, 105)	
(arcsec)		
Power [W]	27.8	

40

The X-Gamma-rays spectrometer (XGS)

Field of view

The InfraRed Telescope (IRT)

Telescope type:	Cassegrain		
Primary & Secondary size:	700 mm & 230 mm		
Material:	SiC (for both optics and optical tube assembly)		
Detector type:	Teledyne Hawaii-2RG 2048 x 2048 pixels (18 µm each)		
Imaging plate scale	0".3/pixel		
Field of view:	10' x 10'	10' x 10'	5' x 5'
Resolution $(\lambda/\Delta\lambda)$:	2-3 (imaging)	20 (low-res)	500 (high-res), goal 1000
Sensitivity (AB mag):	H = 20.6 (300s)	H = 18.5 (300s)	H = 17.5 (1800s)
Filters:	ZYJH	Prism	VPH grating
Wavelength range (µm):	0.7-1.8 (imaging)	0.7-1.8 (low-res)	0.7-1.8 (high-res, TBC)
Total envelope size (mm):	800 Ø x 1800		
Power (W):	115 (50 W for thermal control)		
Mass (kg):	112.6		

THESEUS mission profile

- □ Low-Earth Orbit (LEO), (< 5°, ~600 km)
- □ Rapid slewing bus (>10°/min)
- Prompt downlink (< 10-20s)</p>
- □ Sky fraction that can be observed: 64%

May 2018: THESEUS selected by ESA for Phase 0/A study (with SPICA and ENVISION)

M5 mission themes

ESA SELECTS THREE NEW MISSION CONCEPTS FOR STUDY

7 May 2018 A high-energy survey of the early Universe, an infrared observatory to study the formation of stars, planets and galaxies, and a Venus orbiter are to be considered for ESA's fifth medium class mission in its Cosmic Vision science programme, with a planned launch date in 2032.

The three candidates, the Transient High Energy Sky and Early Universe Surveyor (Theseus), the SPace Infrared telescope for Cosmology and Astrophysics (Spica), and the EnVision mission to Venus were

IRT – Telescope ESA Study

- Korsch FoV off-axis telescope
- Telescope mass compatible with Zerodur/CFRP or SiC
- M2 focus mechanism
- Spider supporting structures for M2 assembly
- 2x XGIS units
- Squared combined FoV for SXI
- Active thermal control with LHP (Propylene)
- Coarse star Trackers

A **Korsch telescope** is corrected for <u>spherical aberration</u>, <u>coma</u>, <u>astigmatism</u>, and <u>field curvature</u> and can have a wide field of view while ensuring that there is little <u>stray light</u> in the <u>focal plane</u>.

THESEUS website

THESEUS Mission

Mission Overview Mission Payload and Profile Science with THESEUS Scientific Requirements THESEUS White Paper 2017 Multi-Messenger Astrophysics with THESEUS 2017 Workshop Proceedings

Teams Contact Persons Project Office Science Study Team Core Team Payload Team Contributing Scientists THESEUS is a mission concept proposed in response to the ESA call for medium-size mission (M5) within the Cosmic Vision Programme and selected by ESA on 2018 May 7 to enter an assessment phase study.

The THESEUS mission

The mission is designed to vastly increase the discovery space of the high energy transient phenomena over the entirety of cosmic history. Its primary scientific goals will address the Early Universe ESA Cosmic Vision themes "How did the Universe originate and what is made of?" (4.1, 4.2 and 4.3) and will also impact on "The gravitational wave Universe" (3.2) and "The hot and energetic Universe" themes. This is achieved via a unique payload providing an unprecedented combination of: 1) wide and deep sky monitoring in a broad energy band (0.3keV - 20 MeV); 2) focusing capabilities in the soft X-ray band providing large grasp and high angular resolution; and 3) on board near-IR capabilities for immediate transient identification and redshift determination.

http://www.isdc.unige.ch/theseus/