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Relativistic Jet

« Powered by NS or BH

« Relativistic plasma outflow

« High-energy (non-thermal) emission

« Bipolar jets from engine

Common astrophysical phenomena phenomena in AGN, microquasar & GRB

Xy  Gravitational energy (inflow -> outflow) .
Same as pulsar wind
. G{otation powered? )

o
‘ * | Role of magnetic field?
»

. @ow to accelerates to relativistic ﬂow?)

How to collimate jets?



Jet ~ Cylindrical Flows
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Inst. of Cylinder Jets

Lorentz factor of flow Density

I'; k=1.5; t =2000 p; k=1.5; t =2000

I = 2 is critical

I I
0.0008 0.0016

24
00024 £or ‘external’
[; k= 2; 1 = 3000 p; K =2; 1 = 3000 kink instability.
K=2.0 40. l . “
t _3000 —200 —100 —200 —100
i — _— , —
2.5 5.0 7.5 10.0 0.00000 0.00008 0.00016 0.00024

Porth&Komissarov15

A lot of other intabilities... Focus on cylinder jet



A Model of Cylindrical Jet




Basic Equations

Relativistic MHD model w/ tangled B-field Tanaka et a1.18 mwras

radiation loss, , & magnetic dissipation.
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Applying to ‘steady cylindrical’ jets



Mechanisms of Acceleration

1D steady flow in ideal MHD limit
no expansion < no acceleration
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Mechanisms of Acceleration

1D steady flow in ideal MHD limit
no expansion < no acceleration
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Mechanisms of Acceleration

1D steady flow in ideal MHD limit
no expansion < no acceleration

(82— B2) % =
dz
Inclusion of non-ideal MHD terms adopted by Tanaka+18
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Mechanisms of Acceleration

1D steady flow in ideal MHD limit
no expansion < no acceleration

0 N

Inclusion of non-ideal MHD terms adopted by Tanaka+18
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Difterent from the well-known rarefaction acceleration



Results



Conversion vs. Cooling Accel.
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Conversion & Cooling Accel.
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Summary

Acceleration of cylindrical flow beyond critical points
® Non-ideal MHD effects (cooling, conversion, dissipation) c.f., st+1smras

® Flow accelerates with cooling the flow by radiation or CR accel.

® Flow accelerates with converting toroidal B-field to turbulent one.
® Coupling of cooing & conversion effects efficiently accel. the flow
® terminal vel. ~ maximum vel. / 2 for the most efficient case.

® total energy flux ~ initial energy flux /2 for the most efficient case

Further studies
® Modeling other processes to understand their roles (mass loading etc.).

® Understanding complicated behaviors of 3D simulations.
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