Optical variability modelling of newly identified blazars and blazar candidates behind Magellanic Clouds

^{1,2}Natalia Żywucka-Hejzner

In collaboration with

²Mariusz Tarnopolski, ²Volodymyr Marchenko, ²Łukasz Stawarz, ¹Markus Boettcher, ³Szymon Kozłowski, and ³Andrzej Udalski

¹Nort-West University, ²Astronomical Observatory of Jagiellonian University, and ³Warsaw University

HEPRO VII, July 2019

Credit: imgur.com/JADDgSL

The work was supported by the Polish National Science Center (NCN) through the PRELUDIUM grant DEC-2014/15/N/ST9/05171.

Table of Contents

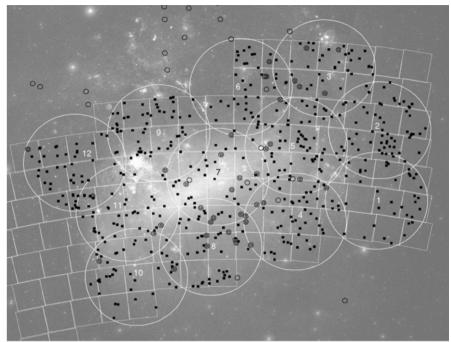
- 1. Introduction
- 2. Identification
- 3. Methodology
- 3. Results
- 4. Conclusions

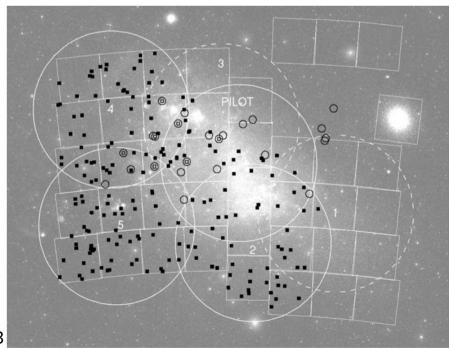
Credit: ESO/S.Brunier

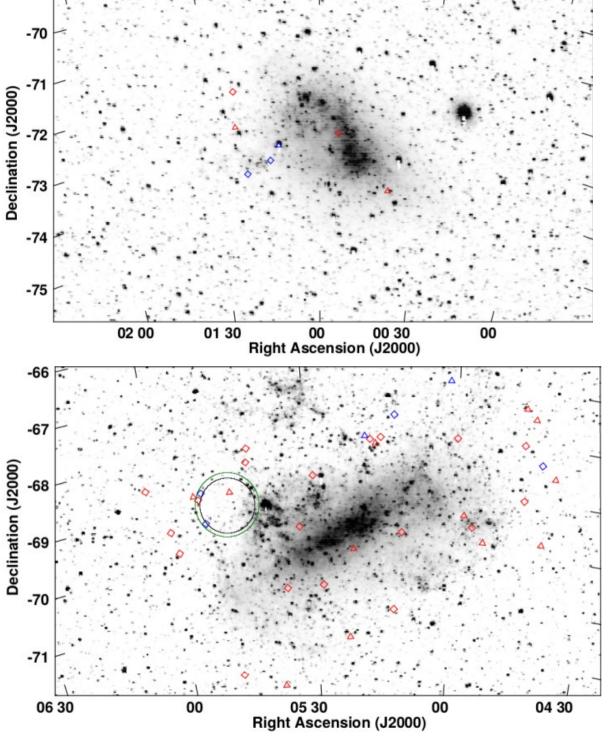
The Optical Gravitational Lensing Experiment OGLE

OGLE project: since 1992; Andrzej Udalski

Main scientific goals:


- MCs and Galactic Bulge monitoring,
- dark matter study with microlensing phenomena,
- extrasolar planets' searching,
- galactic structure study,
- analysis of different time scale variability of hundred millions regularly observed objects.


Location: Las Campanas, Chile.


Magellanic Quasars Survey MQS

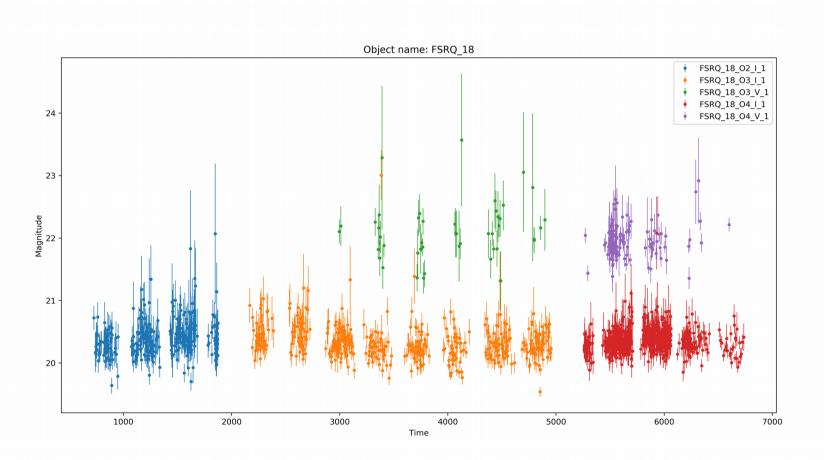
- Sky coverage of the MQS: 100% of the LMC and 70% of the SMC
- Targets from OGLE-III
- Selection based on mid-IR and optical colours, optical variability, X-ray properties, and optical spectroscopy
- Confirmation of 758 quasars (565 in the LMC and 193 in the SMC)
- 94% quasars from the MQS catalogue (527 in the LMC and 186 in the SMC) are newly identified objects

Credit: Kozłowski et al. 2013

- 44 sources selected:27 FSRQs17 BL Lacs
- faint sources with 16 21 mag,
- distant sources with z = 0.3 3.3
- radio-loudness:
 FSRQs: 12 4 450

BL Lacs: 171 - 7 020

- radio spectral index: from -0.57 up to 1.37
- IR spectral index: from -0.44 up to 3.07
- average polarization of PD_{r,4.8} ~ 6.8% at 4.8 GHz
- possible association with flarying source detected by Fermi-LAT


Optical image: Bothun & Thompson (1988)

Optical variability study of all blazar candidates

- Motivation
- → to look for blazar-like characteristics
- → to analyse the long-term behaviour
- \rightarrow to search for the quasi-periodic oscillations.
- Data

Optical variability study in filters I and V of both blazar candidates based on OGLE-II (1996-2000), OGLE-III (2001-2009), and -IV (2010-now) data

 \rightarrow temporal coverage of > 20 years.

Optical variability study of all blazar candidates methodology

 Lomb-Scargle periodograms power spectral density (PSD) for unevenly sampled time series:

$$P_{LS}(\omega) = \frac{1}{2\sigma^2} \left[\frac{\left(\sum_{k=1}^{N} (x_k - \bar{x}) \cos[\omega(t_k - \tau)]\right)^2}{\sum_{k=1}^{N} \cos^2[\omega(t_k - \tau)]} + \frac{\left(\sum_{k=1}^{N} (x_k - \bar{x}) \sin[\omega(t_k - \tau)]\right)^2}{\sum_{k=1}^{N} \sin^2[\omega(t_k - \tau)]} \right]$$

PL + Poisson noise:
$$P(f) = \frac{P_{\text{norm}}}{f^{\beta}} + C$$

smoothly broken PL (SBPL) plus Poisson noise:

$$P(f) = \frac{P_{\text{norm}} f^{-\beta_1}}{1 + \left(\frac{f}{f_{\text{break}}}\right)^{\beta_2 - \beta_1}} + C$$

zero-mean Continuous-time Auto-Regressive Moving Average (CARMA) modelling

differential equation of stochastic processes:

$$\frac{\mathrm{d}^{p} x(t)}{\mathrm{d}t^{p}} + \alpha_{p-1} \frac{\mathrm{d}^{p-1} x(t)}{\mathrm{d}t^{p-1}} + \dots + \alpha_{0} x(t) =$$

$$\beta_{q} \frac{\mathrm{d}^{q} \varepsilon(t)}{\mathrm{d}t^{q}} + \beta_{q-1} \frac{\mathrm{d}^{q-1} \varepsilon(t)}{\mathrm{d}t^{q-1}} + \dots + \varepsilon(t)$$

PSD:
$$P_{\text{CARMA}}(f) = \sigma^2 \frac{\left|\sum\limits_{j=0}^q \beta_j (2\pi \mathrm{i} f)^j\right|^2}{\left|\sum\limits_{k=0}^p \alpha_k (2\pi \mathrm{i} f)^k\right|^2} \qquad \text{Ornstein-Uhlenbeck process for CARMA(1,0)} \\ P_{\text{CARMA}}(f) = \sigma^2 \frac{\left|\sum\limits_{j=0}^q \beta_j (2\pi \mathrm{i} f)^j\right|^2}{\left|\sum\limits_{k=0}^p \alpha_k (2\pi \mathrm{i} f)^k\right|^2} \qquad P_{\text{OU}}(f) = \frac{\sigma^2}{\alpha_0^2 + (2\pi f)^2}$$

$$P_{\rm OU}(f) = \frac{\sigma^2}{\alpha_0^2 + (2\pi f)^2}$$

Optical variability study of all blazar candidates methodology

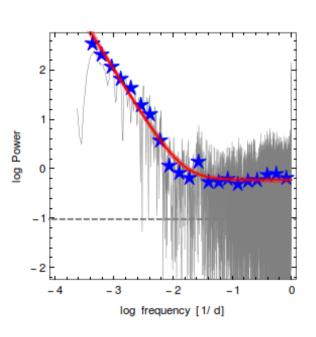
• Hurst exponent measures the statistical self similarity of a time series x(t): $x(t) \doteq \lambda^{-H} x(\lambda t)$ autocorrelation function: $\rho(k) = \frac{1}{2} \left[(k+1)^{2H} - 2k^{2H} + (k-1)^{2H} \right]$

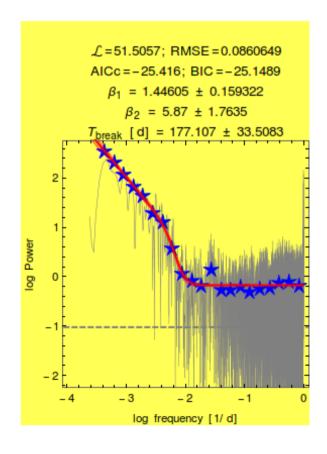
Properties of Hurst exponent:

- $\rightarrow 0 < H < 1.$
- \rightarrow H = 1/2 for an uncorrelated process (e.g. white noise or Brownian motion),
- \rightarrow H > 1/2 for a persistent (long-term memory, correlated) process,
- \rightarrow H < 1/2 for an anti-persistent (short-term memory, anti-correlated) process.
- A-T Plane
 Abbe value, which quantifies the smoothness of a time serie

frequency relative to number of observations: T = T/N where T is number of turning points in a time series

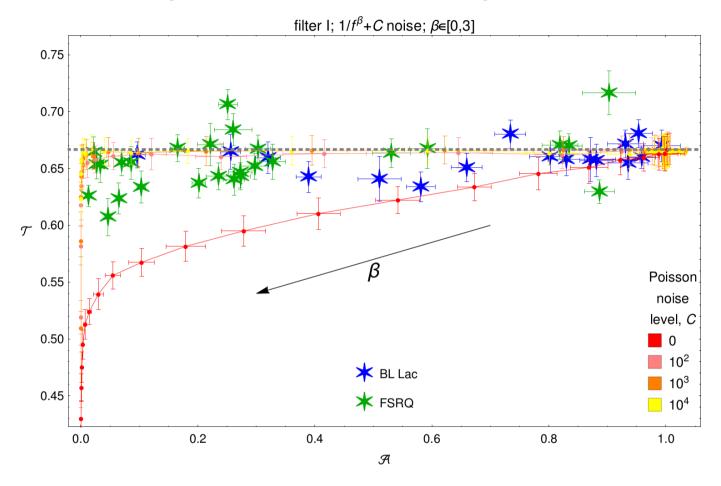
$$\mathcal{A} = \frac{\frac{1}{N-1} \sum_{i=1}^{N-1} (x_{i+1} - x_i)^2}{\frac{2}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2}$$


- → to provide a fast and simple estimate of the Hurst exponent
- \rightarrow to differentiate between different types of colored noise, P(f) \propto 1/f $^{\beta}$, characterized by different values of β

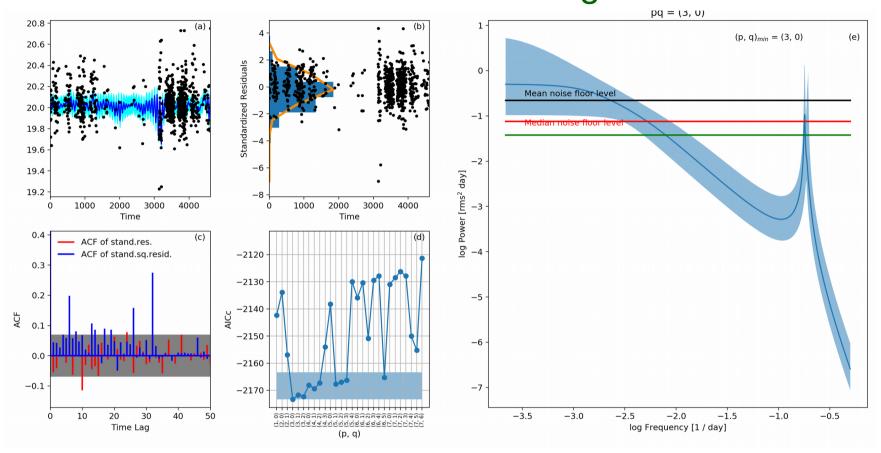

Optical variability study of all blazar candidates fitted models

- 23 sources with PL model, i.e. 10 FSRQs and 13 BL Lacs
- 15 sources with SBPL model, i.e. 13 FSRQs and 2 BL Lacs
- 6 sources with PL and SBPL models, i.e. 4 FSRQs and 2 BL Lacs

FSRQ 20


 \mathcal{L} =41.6913; RMSE=0.137339 AICc=-13.2872; BIC=-11.6091 β = 1.92301 ± 0.116582

- \rightarrow FSRQs' PL exponent β mostly lies in the range (1, 2)
- → one object has a flat PSD, β ≈ 0
- → BL Lacs are slightly flatter, spanning mostly the range (1, 1.8)
- → one BL Lac has a flat PSD
- → three BL Lacs have steeper PSDs, with $\beta \sim 3-4$


Optical variability study of all blazar candidates A-T plane and Hurst exponents

PL plus Poisson noise PSD of the form P(f) $\propto 1/f^{\beta} + C$ with $\beta \in \{0, 0.1, ..., 3\}$

- → most objects have H ≤ 0.5 → short-term memory
- → 4 BL Lacs and 2 FSRQs have H > 0.5 → long-term memory

Optical variability study of all blazar candidates Carma modelling

- → most of the examined objects, i.e. 18/27 FSRQs and 13/17 BL Lacs, are well described by a CARMA(2, 1) process
- \rightarrow This simplest model, with a single-Lorentzian PSD, is in turn the best fit for only 3/27 FSRQs and 2/17 BL Lacs

:	Object	β_{PL}	β_1	β_2	T_{break} [d]	Best model	$\log M_{ m BH}$	Н	T_{break} [d]	QPO [d]	CARMA order
	(1)	(2)	(3)	(4)	[G] (5)	(6)	(7)	(8)	(9)	(10)	(11)
					RO type blaz						
-	FSRQ type blazar candidates $-$ PL $-$ 0.42 \pm 0.02 $-$ (2,1)										
	J0114-7320*	1.45 ± 0.18	0.37 ± 0.40	4.53 ± 1.56	338 ± 127	SBPL	(9.32, 10.45)	0.06 ± 0.04	246		(2,1)
	J0120-7334*	1.86 ± 0.15	1.28 ± 0.23	5.00 ± 1.91	229 ± 75	SBPL	(9.06, 10.14)	0.04 ± 0.03	_		(3,2)
	J0122-7152	1.45 ± 0.17	1.01 ± 0.27	5.65 ± 4.35	155 ± 61	PL, SBPL	(8.97, 10.11)	0.24 ± 0.04			(2,1)
	J0442-6818*	1.75 ± 0.27	0.83 ± 0.31	8.93 ± 5.20	241 ± 51	SBPL	(9.27, 10.24)	0.04 ± 0.03	363	_	(4,2)
	TO 445 0050	1 00 1 0 00				DI		0.04 0.05			(0.1)
	J0445-6859	1.30 ± 0.29	_	_	_	PL	_	0.31 ± 0.05	_	_	(2,1)
	J0446-6758	1.60 ± 0.18	0.20 0.26	C 02 2 20	050 50	PL	(0.00.10.10)	0.45 ± 0.05	_		(2,1)
	J0455-6933	1.58 ± 0.28	0.30 ± 0.36	6.83 ± 3.38	250 ± 58	SBPL	(9.20, 10.19)	0.25 ± 0.05		_	(1,0)
	J0459-6756	1.64 ± 0.27	0.88 ± 0.44	6.56 ± 5.47	246 ± 103	PL, SBPL	(9.01, 10.18)	0.21 ± 0.03		_	(3,2)
	J0510 - 6941	1.63 ± 0.13	0.96 ± 0.16	5.75 ± 1.58	218 ± 39	SBPL	(9.22, 10.16)	0.04 ± 0.03	_	_	(2,1)
	J0512 - 7105	0.14 ± 1.56				$_{ m PL}$		0.63 ± 0.05			(2,1)
	J0512 - 6732*	1.00 ± 0.12	0.64 ± 0.09	6.84 ± 3.26	67 ± 10	SBPL	(8.49, 9.40)	0.85 ± 0.03	_	_	(2,1)
	J0515 - 6756	1.40 ± 0.24	_	_	_	$_{\mathrm{PL}}$		0.38 ± 0.02			(2,1)
	J0517 - 6759	1.23 ± 0.21	0.70 ± 0.30	6.66 ± 6.04	164 ± 56	PL, SBPL	(9.16, 10.25)	0.29 ± 0.04			(1,0)
	J0527 - 7036	1.26 ± 0.13	1.06 ± 0.22	3.82 ± 3.69	48 ± 34	$^{ m PL}$	(8.18, 9.73)	0.04 ± 0.03	_	1.48	(4,3)
	J0528-6836	1.47 ± 0.15				$_{\mathrm{PL}}$		0.26 ± 0.05	_	_	(2,1)
	J0532-6931	1.29 ± 0.13	0.68 ± 0.21	4.33 ± 1.76	115 ± 45	SBPL	(8.76, 9.90)	0.20 ± 0.03 0.07 ± 0.03			(3,2)
	J0535-7037	1.11 ± 0.14	0.00 ± 0.21	4.55 ± 1.70		PL	(6.70, 9.90)	0.42 ± 0.03	_		(2,1)
	J0541-6800	1.56 ± 0.14	0.71 ± 0.34	3.35 ± 1.00	319 ± 172	SBPL	(9.16, 10.47)	0.42 ± 0.05 0.08 ± 0.05			(2,1) $(2,1)$
	J0541-6815	1.92 ± 0.13 1.92 ± 0.12	1.45 ± 0.16		177 ± 34	SBPL		0.08 ± 0.03 0.21 ± 0.03	440		
	J0541-6815	1.92 ± 0.12	1.45 ± 0.16	5.87 ± 1.76	177 ± 34	SBPL	(9.03, 9.98)	0.21 ± 0.03	440		(2,1)
	J0547 - 7207	1.37 ± 0.21	0.29 ± 0.37	4.66 ± 2.00	284 ± 106	SBPL	(9.28, 10.40)	0.03 ± 0.02			(2,1)
	J0551-6916*	1.46 ± 0.22	0.75 ± 0.31	7.36 ± 5.21	225 ± 64	SBPL	(9.01, 10.00)	0.06 ± 0.04		_	(2,1)
	J0551 - 6843*	1.48 ± 0.17		_		$_{\mathrm{PL}}$		0.11 ± 0.04			(2,1)
	J0552 - 6850	1.62 ± 0.14	-0.70 ± 0.76	2.36 ± 0.28	1201 ± 417	SBPL	(9.74, 10.84)	0.22 ± 0.05			(2,1)
	J0557 - 6944	1.57 ± 0.24	_	_	_	$_{\mathrm{PL}}$		0.49 ± 0.05	_	_	(1,0)
	J0559-6920	1.44 ± 0.19	0.79 ± 0.33	5.51 ± 3.57	248 ± 93	PL, SBPL	(9.02, 10.15)	0.22 ± 0.03	_		(2,1)
	J0602-6830	1.35 ± 0.13	0.30 ± 0.69	2.25 ± 0.68	538 ± 579	SBPL	< 10.79	0.07 ± 0.04	479		(4,2)
	00002 0000	1.00 ± 0.10	0.00 ± 0.00			zar candidate		0.07 ± 0.01	110		(1,2)
	J0039-7356	1.61 ± 0.28	_		—	PL	_	0.44 ± 0.03			(2,1)
	J0111-7302*	1.76 ± 0.44				$_{\mathrm{PL}}$		0.35 ± 0.04	_	_	(2,1)
	J0123-7236	4.02 ± 1.23				$_{\mathrm{PL}}$		_			(2,1)
	J0439-6832	0.98 ± 0.22		_		$_{\mathrm{PL}}$	_	0.60 ± 0.06			(2,1)
	J0441-6945	1.20 ± 0.16	_	_	_	$_{\mathrm{PL}}$	_	0.45 ± 0.03	_	_	(2,1)
	TO		1001010		100 100						
	J0444 - 6729	1.47 ± 0.21	1.00 ± 0.48	4.42 ± 4.20	193 ± 133	PL	_	0.21 ± 0.05			(1,0)
	J0446 - 6718	3.5 ± 1.13	_	_	_	$_{\mathrm{PL}}$	_	0.58 ± 0.05	_		(2,1)
	J0453-6949	2.64 ± 0.66	_	_	_	PL	_	0.48 ± 0.04		_	(2,1)
	J0457 - 6920	1.03 ± 0.18				PL	_	0.26 ± 0.03		_	(2,1)
	J0501-6653*	1.44 ± 0.20	0.98 ± 0.32	6.95 ± 6.63	217 ± 78	PL, SBPL		0.29 ± 0.04	25;89	_	(2,1)
	J0516-6803	0.00 ± 0.93	_	_		$_{\mathrm{PL}}$	_	0.62 ± 0.05	706	5.54	(3,0)
	J0518 - 6755*	1.34 ± 0.15	0.84 ± 0.33	3.75 ± 2.28	182 ± 118	PL, SBPL	_	0.18 ± 0.03	_	6.53	(3,0)
	J0521-6959	1.18 ± 0.11	0.54 ± 0.26	2.94 ± 0.92	192 ± 112	SBPL	_	0.06 ± 0.04		_	(2,1)
	J0522-7135	1.16 ± 0.39	_			$_{ m PL}$		0.39 ± 0.04			(2,1)
	J0538 - 7225	1.09 ± 0.16	0.42 ± 0.25	5.17 ± 2.86	183 ± 57	SBPL		0.28 ± 0.04	_	_	(2,1)

Conclusions

- The secure blazar candidates (5 FSRQs and 2 BL Lacs) have an LSP best described by the SBPL, with break time scales at 200–300 days; 1 FSRQ and 1 BL Lac are consistent with the PL PSD;
- For FSRQs such a break is not really surprising, i.e. they can be interpreted as disk dominated.
 But the two BL Lacs with a broken PSD are interesting, as BL Lacs are believed to be jet dominated;
- the steepness of the high frequency component of the SBPL is intriguing: it can indicate a new class of AGNs, or it can be a sign of a double BH system, where the shorter time scale variability from the disk is wiped out the accretion disk surrounds both BHs, outside their orbit.

Further directions

Look for high and very high energy coincidences:

- Chandra
- Fermi-LAT
- H.E.S.S.