Probing the dynamics of AGN jets with advanced semi-analytical modelling

Matteo Lucchini, S. Markoff, F. Krauß, P. Crumley, R. M. T. Connors

EHT collaboration 2019

How can we use semi-analytical models to guide simulations?

April 5

April

Brightness Temperature (10⁹ K)

EHT collaboration 2019

Ap

 $t = 29900 \ r_{o}/c$

EHT collaboration 2019

Extension of agnjet (e.g. Markoff and Nowak 2001)

- Focus on jet dynamics and energetics
- Account for entire outflow

Jet nozzle/corona: power U_j , temperature T, magnetization $\sigma_0 \gg 1$, radius R_0

Jet nozzle/corona: power $U_{\rm j}$, temperature T, magnetization $\sigma_{\rm o} \gg$ 1, radius $R_{\rm o}$ Magnetic acceleration region: distance Z_{diss} , magnetization $\sigma_f \leq 1$,

Jet nozzle/corona: power $U_{\rm j}$, temperature T, magnetization $\sigma_{\rm O} \gg$ 1, radius $R_{\rm O}$ Magnetic acceleration region: distance Z_{diss} , magnetization $\sigma_f \leq 1$, Outer jet: non-thermal tail $N(\gamma) \propto \gamma^{-p}$

Magnetically accelerated jets

Magnetically accelerated jets

Magnetically accelerated jets

Modelling M87

- Large BH mass + vicinity \rightarrow Event Horizon Telescope target
- VLBI mapping of jet profile

Modelling M87

- Large BH mass + vicinity \rightarrow Event Horizon Telescope target
- VLBI mapping of jet profile

Modelling M87: pc-scale core SED

Modelling M87: SSC-dominated core

Modelling M87: SSC-dominated core

Modelling M87: SSC-dominated core

Can't match X-rays with SSC from the jet base! High σ and high $T_e \rightarrow$ high synchrotron luminosity

Radio/X-ray emission fit by thermal+non-thermal synchrotron

Radio/X-ray emission fit by thermal+non-thermal synchrotron Black body (host galaxy?) dominates optical/IR

Particle acceleration close to BH: $z_{diss} \approx 100 R_g$, $\sigma \gg 1$

Particle acceleration close to BH: $z_{diss} \approx 100 R_g$, $\sigma \gg 1$ Compared to EHT simulations: "high" P_i , low L_X models favoured

Modelling M87: pc-scale SED+3FGL

IC from the core far below 3FGL! Suggests different origin of γ-ray emission e.g. spine/sheath, hadronic, kpc-scale...

M87 vs nearby blazars

M87 is not a typical *Fermi* HBL, low power!

Beamed luminosity ≈1-4 orders of magnitude lower than *Fermi* sources

M87 vs nearby blazars

M87 is not a typical *Fermi* HBL, low power!

Beamed luminosity ≈1-4 orders of magnitude lower than *Fermi* sources

Consistent with power estimate from SED modelling

Conclusions

 M87: synchrotron-dominated X-rays, low jet power, particle acceleration close to BH

Conclusions

- M87: synchrotron-dominated X-rays, low jet power, particle acceleration close to BH
- M87 not misaligned counterpart of a regular γ-ray HBL!

Conclusions

- M87: synchrotron-dominated X-rays, low jet power, particle acceleration close to BH
- M87 not misaligned counterpart of a regular γ-ray HBL!
- Future work: high power sources e.g. EHT calibrators

Jet length

