The Pulsar Sequence

The Fundamental Plane of Gamma-Ray Pulsars: From Observations to PIC Models

Constantinos Kalapotharakos

NASA, Goddard Space Flight Center University of Maryland College Park, CRESST II

Collaborators: Alice Harding (NASA/GSFC) Demos Kazanas (NASA/GSFC) Zorawar Wadiasingh (NASA/GSFC, USRA) Gabriele Brambilla (University of Milan, NASA/GSFC) Andrey Timokhin (UMCP, NASA/GSFC)

HEPRO VII

HIGH ENERGY PHENOMENA IN RELATIVISTIC OUTFLOWS VII

BARCELONA, 9-12 JULY 2019 Faculty of Physics University of Barcelona

https://indico.icc.ub.edu/event/9/ Contact: hepro7@icc.ub.edu

UNIVERSITAT BARCELONA

SCIENTIFIC ORGANIZING COMMITTEE

LeCU Felix Aharonian (DIAS/MPIk) Gennady Bisnovaly-Kogan (KI) Ioannis Contopoulos (Academy of Athens) Alice Harding (NASA) Dmitry (Khangulyan (Rikkyo University) Josep M. Paredes (Universitat de Barcelona/ICCUB, Chair) Manel Perucho (Universitat de Valencia) Elena Pian (INAF) Tswi Piran (HLUI) Nanda Rea (CSIC-IEEC) Elisa Resconi (TUM) Gustavo E. Romero (AR/UNLP) Samar Safi-Harb (University of Manitoba) Megan C. Urry (Yale University) Xiang Yu Wang (Nanjing University)

LOCAL ORGANIZING COMMITTEE

Pol Bordas Valenti Bosch-Ramon Matteo Cerruti Kazushi Iwasawa Edgar Molina Josep M. Paredes Marc Ribó Núria Torres-Albà

IEEC®

High Energy Phenomena in Relativistic Outflows VII (HEPRO VII)

Outline

- Observations (FERMI)
- Orbital exploration CR vs SR
- Assumptions: Eq. Cur. Sheet, LC RRLR Fundamental Plane of γ-ray Pulsars
- What PIC Global Models Say
- Summary

FERMI

$N_p \rightarrow \times 30$

N_p > 230 (117 in 2PC; Abdo et al. 2013)

FFE Models

Contopoulos, Kazanas, & Fendt (1999) Spitkovsky (2006)

Kalapotharakos er al. (2012)

Orbital Exploration (SR↔CR)

 $\theta = 0.0, R_{c} = 10.00$

Fundamental Plane (Theory)

 $B_{LC} \propto B_* R_{LC}^{-3} \propto B_* P^{-3}$

 $E_{BLC} \propto \epsilon^{4/3} P^{7/3} B_*^{-1}$

Assumptions

 $(R_C \propto R_{LC} \propto P)$

 $\rho_{GJ} \propto B_* P^{-1}$

 $\dot{\mathcal{E}} \propto B_*^2 P^{-4}$

 $E_{BLC}B_{LC} \propto \gamma_L^4 R_C^{-2}$

1) Radiation Reaction Limit Regime

2) At the ECS near the LC

Kalapotharakos et al. (2019)

$$\gamma_L \propto \epsilon^{1/3} P^{1/3}$$

 $L_{\gamma 1} \propto \epsilon^{4/3} P^{-2/3}$

$$L_{\gamma} \propto \epsilon_{cut}^{4/3} B_*^{1/6} \dot{\mathcal{E}}^{5/12}$$

$$\frac{2q_e^2\gamma_L^4}{3m_e c R_c^2(\theta)} = \frac{q_e \mathbf{v} \cdot \mathbf{E}}{m_e c^2} \qquad \epsilon_{cut} = \frac{3}{2} c\hbar \frac{\gamma_L^3}{R_c(\theta)}$$

Fundamental Plane (Theory)

Assumptions

 $L_{\nu} \propto \epsilon_{cut} \dot{\mathcal{E}}$ SR

88 Fermi YPs+MPs

88 Fermi YPs+MPs

4D-space is hard to visualize

$$x = B_*^{1/6} \dot{\mathcal{E}}^{5/12}$$
$$y = \epsilon_{cut}^{4/3}$$
$$z = L_{\gamma}$$
$$x \propto x y$$
$$(Theory)$$
$$x \propto x^{0.99} y^{0.88}$$
$$(Fermi \ data)$$

Fermi YPFermi MP

4D-space is hard to visualize

$$x = B_*^{1/6} \dot{\mathcal{E}}^{5/12}$$
$$y = \epsilon_{cut}^{4/3}$$
$$z = L_{\gamma}$$
$$x \propto x y$$
$$(Theory)$$
$$x \propto x^{0.99} y^{0.88}$$
$$(Fermi \ data)$$

Fermi YPFermi MP

Kinetic PIC simulations provide a path to self-consistency. Field structure & particle distributions are consistent to each other

3D Particle-In-Cell code

Kalapotharakos et al. (2018) Brambilla et al. (2018) Kalapotharakos et al. (2019, in prep) C-3PA

Pleiades & Discover Supercomputers, NASA ~ 4000cpus ~ 10⁷ - 10⁹ particles Cartesian
Conservative
Vay's algorithm
Current Smoothing
Radiation Reaction Forces
Load Balancing
Field Line Dependent Particle Injection

We scale-up the particle energies assuming realistic B and P values.

But...

The γ-ray light-curves for low *F* are messy.
 Particle-injection regions that regulate the γ-ray emission

Separatrix injection model

The γ -ray pulsar radiation is mainly regulated by

The particle injection rate \mathcal{F}_s along 1. the separatrix 2.

The width w of the separatrix zone

Kalapotharakos et al. (in prep.)

Requirements

The particle injection rate along the open and the closed field-lines is not very small. $(> 5\mathcal{F}_{GI}^{0})$ However, it is <u>not necessary to be high</u>. $(< 10 \mathcal{F}_{GI}^{0})$

Nice, well defined light-curves similar to those observed by Fermi, for all $\dot{\mathcal{E}}$. They seem able of reproducing the $\delta - \Delta$ correlation.

Fundamental Plane Observations & PIC Models

Fundamental Plane Observations & PIC Models

Fundamental Plane Observations & PIC Models

Pulsar Theater

Particle injection inside the LC.

Kalapotharakos et al. (in prep.)

Pulsar Theater

Particle injection inside the LC.

Kalapotharakos et al. (in prep.)

CK videos

Summary

 Fermi data contain an unprecedented level of information that uncovers the mysteries of the pulsar γ-ray emission.

Fundamental Plane

Separatrix Injection Model

- Kinetic PIC models indicate that the particle-injection rate, \mathcal{F}_s , in the separatrix region and the width, w, of this zone regulate the pulsar emission. $\sigma(\dot{\varepsilon})$ $\mathcal{F}(\dot{\varepsilon})$
- Kinetic PIC models follow the FP. The continuation of this study is expected to provide additional constraints deepening even further our understanding.

<u>Q1</u>

Is there any explanation about the observed scattering around the fundamental plane?

<u>Q2</u>

Is there any other prediction other than that of the fundamental plane?

Is that all? No, it is actually even better

For low $\dot{\mathcal{E}}$, $E_{acc} \propto B_{LC}$

 $\epsilon_{cut} \propto B_*^{-1/8} \dot{\mathcal{E}}^{7/16}$

 $B_{\star_{\mathrm{MP}}} \approx 10^{-4} B_{\star_{\mathrm{YP}}}$ $\epsilon_{\mathrm{cut}_{\mathrm{MP}}} \approx 3 \epsilon_{\mathrm{cut}_{\mathrm{YP}}}$

Viable interpretation of the observed γ-ray pulsar death-line

Better sensitivity in the MeV-band telescope (AMEGO)

VHE pulsed detections

 $N_p \to \times 30$ $N_p > 230$ (117 in 2PC; Abdo et al. 2013)

Recent detections by *MAGIC* and *HESSII* of very high energy (VHE) emission from the **Crab** (Ansoldi et al. 2016), **Vela** (Djannati-Atai et al. 2017), and **Geminga** (Lopez et al. 2018) pulsars imply an additional emission component, and inverse Compton (IC) seems to be the most reasonable candidate (Rudak & Dyks 2017; Harding et al. 2018).

In any case, the multi-TeV photon energies detected imply very high particle energies ($\gamma_L > 10^7$).

Pulsar Theater

Particle injection near the stellar surface.

Brambilla et al. 2018

 e^{-}

- 95% of the total emission
- Near the equatorial current sheet
- For low α -values closer to the Y-point (LC)
- For high α-values closer to the rotational equator compared to the theoretical extend of the ECS

88 Fermi YPs+MPs

Separatrix injection model

The γ -ray pulsar radiation is mainly regulated by

The particle injection rate *F_s* along the separatrix
 The width *w* of the separatrix zone

Kalapotharakos et al. (in prep)

Requirements

The particle injection rate along the open and the closed field-lines is <u>not very small</u>. $(> 5\mathcal{F}_{GJ}^{0})$ However, it is <u>not necessary to be high</u>. $(< 10\mathcal{F}_{GI}^{0})$

Separatrix injection model

The γ -ray pulsar radiation is mainly regulated by

The particle injection rate \mathcal{F}_s along 1. the separatrix 2.

The width *w* of the separatrix zone

Kalapotharakos et al. (in prep)

Requirements

The particle injection rate along the open and the closed field-lines is not very small. $(> 5\mathcal{F}_{GI}^{0})$ However, it is not necessary to be high. $(< 10 \mathcal{F}_{GI}^{0})$

FFE Models

γ-ray light-curves from the region near the equatorial current sheet (ECS)

Contopoulos & Kalapotharakos (2010)

FIDO Models

FIDO Models (FFE Inside the Light-Cylinder, Dissipative Outside the Light Cylinder)

σ : conductivity

FIDO Models

FIDO Models

The FIDO model allows the calculation of the phase-averaged, phaseresolved spectra and the calculation of the total γ -ray luminosity.

Orbital Exploration (SR↔CR)

$$\mathbf{v}_{\mathrm{A}} = \frac{\mathbf{E} \times \mathbf{B} \pm (\boldsymbol{E}_{0}\mathbf{E} + \boldsymbol{B}_{0}\mathbf{B})}{\boldsymbol{E}_{0}^{2} + \boldsymbol{B}^{2}}$$

Aristotelian Electrodynamics (Gruzinov 2012; Kelner et al. 2015)

Kalapotharakos et al. (2019)

Orbital Exploration (SR↔CR)

$$\mathbf{v}_{\mathrm{A}} = \frac{\mathbf{E} \times \mathbf{B} \pm (\mathbf{E}_{0}\mathbf{E} + \mathbf{B}_{0}\mathbf{B})}{\mathbf{E}_{0}^{2} + \mathbf{B}^{2}}$$

Aristotelian Electrodynamics (Gruzinov 2012; Kelner et al. 2015)

$$R_C = \frac{\gamma_L m_e c^2}{q_e B_{eff}}$$

$$B_{eff} = \sqrt{\left(\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{\mathbf{c}}\right)^2 - \left(\frac{\mathbf{v} \cdot \mathbf{B}}{c}\right)^2}$$

Cerutti et al. 2016

Kalapotharakos et al. (2019)

Reverse Engineering

 θ should be sustained by another process (e.g. heating)

Reverse Engineering

 θ should be sustained by another process (e.g. heating)

Reverse Engineering

 θ should be sustained by another process (e.g. heating)

Towards self-consistency:

1) Arbitrary particle injection

→ consistent field structure & particle distribution

Separatrix injection model

The γ -ray pulsar radiation is mainly regulated by

 The particle injection rate *F_s* along the separatrix
 The width *w* of the separatrix zone

Kalapotharakos et al. (in prep)

Requirements

The particle injection rate along the open and the closed field-lines is <u>not very small</u>. $(> 5\mathcal{F}_{GJ}^{0})$ However, it is <u>not necessary to be high</u>. $(< 10\mathcal{F}_{GI}^{0})$