The Role of Jets in BHXRBs

Nick Kylafis University of Crete

(with Pablo Reig)

Barcelona, 11-7-2019

Introduction (1)

- In the BHXRB community, jets are thought to be simply fireworks, that emit radio waves.
- I would like to convince you that jets in BHXRBs play a central role in the observed phenomena.
- I will concentrate on only two of them:
- **D** Power-law X-ray spectra with photon index Γ.
- □ Time lag of hard X-ray photons w.r.t. softer ones.

Introduction (2)

Let me start with some strong beliefs that our community has.

Belief #1: The power-law X-ray spectrum in BHXRBs is produced in the corona (the hot inner flow, ADAF) or possibly at the base of the jet (S. Markoff).

This is fine, but stay tuned.

Introduction (3)

- Belief #2: The time lag of the hard X-ray photons w.r.t. the softer ones is caused by propagating fluctuations in the accretion flow (Kotov et al. 2001).
- This is also fine, I like it very much, and it could be happening, but ...
- the two mechanisms (inverse Compton and propagating fluctuations) do not "talk" to each other.
- In other words, no correlation is expected between the time lag and the spectral index Γ.

Correlation

However, the two are correlated!!!

- □ A nice correlation (next slide) is found in GX 339-4.
- We have explained this correlation by Comptonization in the jet (time lag is due to Comptonization).
- By the way, Comptonization in the jet is unavoidable, because the jet is fed by the hot inner flow (ADAF).
- Thus, photons in the hot inner flow cannot escape without travelling through the jet.

Kylafis & Reig (2018)

GX 339-4

The values of the two model parameters (T, R0) are correlated

GX 339-4

Prediction

Break frequency in radio spectrum vs. Г

Generalization to all sources

Could the above be just a peculiarity of GX 339-4?

No, all the sources do more or less the same.

Time lag vs. Γ (all data) (Reig et al. 2018)

Low vs. High inclination

Dependence of the correlation on observing direction

Type-B QPOs

Stevens & Uttley (2016) did phase-resolved spectroscopy of the type-B QPOs in GX 339-4 and found a sinusoidal variation of Γ with phase.

They interpreted it as a precessing jet.

Stevens & Uttley (2016)

Kylafis & Reig (in preparation)

As we have seen, inverse Compton scattering in the jet **predicts** a variation of Γ with viewing angle.

- Stevens & Uttley found an amplitude of variation of Γ of ~6%.
- We have explained this variation quantitatively with our jet model.
- In conclusion, jets in BHXRBs are NOT at all fireworks. They play a central role!

THANKS