Structure of a collisionless pair jet in a magnetized electron–proton plasma: flow-aligned magnetic field

MARK ERIC DIECKMANN, DEPARTMENT OF SCIENCE AND TECHNOLOGY, LINKÖPING UNIVERSITY, SWEDEN

COLLABORATORS: D FOLINI, I HOTZ, A NORDMAN, P. DELL'ACQUA, A YNNERMAN, R WALDER, M FALK, P STENETEG

Motivation

- Accreting black holes can emit jets which are composed of electrons, positrons and some ions.
- Hydrodynamic models suggest that the jet material flows through a channel that is enclosed by a *contact discontinuity*.
- Shock 1 separates jet material from the inner cocoon (IC).
- Shock 2 separates ambient material from the outer cocoon (OC).
- Can we find a similar jet structure in collision-less plasma?
- Collisionless shocks have been widely examined.
- Is there an electromagnetic "contact discontinuity" that separates a pair plasma from an electron-proton plasma?

Simulation setup

- Our simulation box is filled uniformly with ambient electrons and protons with the density n_0 and temperature $T_0 = 2 \text{ keV}$.
- A uniform magnetic field B₀ = (B₀, 0, 0) fills the simulation box at the time t=0.
- We set $P_B = B_0^2 / 2\mu_0 = n_0 k_B T_0 = P_T$.
- A pair cloud is injected at the left boundary with the mean velocity $v_c = (0.9c, 0, 0)$ and temperature 200 T_0 .
- Its density has a maximum 5n₀ and decreases quadratically to both vertical sides.

The simulation box of our 2D PIC simulation uses periodic boundaries along y (vertical) and reflecting ones along x (horizontal).

Global jet structure

- Upper left to lower right: densities of the cloud electrons, cloud positrons, ambient electrons, protons and moduli of the electric and magnetic fields.
- *Time unit:* inverse proton plasma frequency $\omega_{pp} = (n_0 e^2 / m_p \epsilon_0)^{0.5}$
- We resolve $0 \le t \le 34$.
- Space unit: proton skin depth $\lambda_s = c/\omega_{pp}$.
- Time scale (n_0 in particles per cm³) : 0.7 ms / Vn_0 and spatial : 2.3 \cdot 10⁵ m / Vn_0

Electromagnetic discontinuity

- Protons represent the ambient plasma.
- Positrons represent the jet material.
- The contour lines show where the magnetic pressure exceeds the thermal pressure of the ambient electrons by the factor 100.
- Time covered: *13.5 ≤ t ≤ 34*.
- The discontinuity is a stable and coherent magnetic field structure.
- It is practically impenetrable for the ambient protons and confines well the positrons.

Proton acceleration

- Animation of the proton phase space density distribution f(x,y, |v|) for the interval y < 0 (half the jet).
- Long axis : $x \text{ in } \lambda_s$
- Axis to the right : y in λ_s
- Vertical axis : |v| in proton thermal speeds $(4.4 \cdot 10^5 \text{ m/s})$
- Maximum speed 0.132c
- Protons reach 4 MeV.

Summary

- An initially charge- and current-neutral pair cloud expanded into an electron-proton plasma.
- A stable discontinuity formed after about $10/\omega_{pp}$. It separated the positrons from the protons.
- Strong coherent magnetic fields are immersed by positrons with a relativistic temperature ⇒ radio synchrotron emissions.
- Positrons are accelerated at the jet's head while jet electrons are slowed down. ⇒ positrons outrun the jet with multi-MeV energies.
- Proton energies grow from 2 keV to 4 MeV ⇒ fast magneto-sonic shocks form with a Mach number 11.

Paper: M E Dieckmann et al., Astron & Astrophys, 621, A142, 2019