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Daily fluxes of CTA102 in 2016 and 2017
observed with (a) Fermi-LAT, (b) Swift-XRT, and
(c) ATOM.
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@ CTA102 is an FSRQ at
z=1.037

@ Late 2016 till early 2017:

@ A roughly 4 months long
flare at v-ray, X-ray, and
optical energies

o Fluxes rose and fell steadily
and symmetrically with
short spikes on top
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Daily fluxes of CTA 102 in 2016 and 2017

observed with (a) Fermi-LAT, (b) Swift-XRT, and
(c) ATOM.
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@ What can cause such a flare?

@ Where did the knot come
from?
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Ablation of a gas cloud

@ A gas cloud (black circle)
dv enters the jet (gray area)

@ The jet’s ram pressure (red
arrow) ablates the cloud’s
material that has already
entered (orange arrow)

@ The volume dV ablated in a
time interval dt changes over
time

@ The number dN of ablated
particles during dt changes
over time

Ablation of a gas cloud by the relativistic jet.
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Ablation of a gas cloud

@ Integration of p over dV gives
av dN

@ At any given time ¢ since first
contact, the injection term
becomes

?+t?
Qinj x In <204>C>
t§ + (fc — 1)

with

te = 0veRe

fo = dVeho

&: Doppler factor of the jet
vc: Speed of the gas cloud
R.: Radius of the gas cloud
ro o (Teng ')'/2

Ablation of a gas cloud by the relativistic jet.
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Model lightcurves (red) for (a) Fermi-LAT, (b)
Swift-XRT, and (c) ATOM/R.
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@ The resulting lightcurves fit
very well the long-term trend
@ 1) Leptonic one-zone model

@ Only location: outer edge of
the BLR
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Model lightcurves (red) for (a) Fermi-LAT, (b)
Swift-XRT, (c) ATOM/R, and (d) Swift-UVOT/V.

Michael Zacharias

@ The resulting lightcurves fit
very well the long-term trend

@ 1) Leptonic one-zone model

@ Only location: outer edge of
the BLR

@ 2) Hadronic one-zone model
o Different locations possible

@ Cloud parameters inferred
from modeling



Cloud parameters

@ The radius depends on the duration of the event and the speed
of the cloud

@ Speed is determined as orbital speed around the SMBH
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Cloud parameters

@ The radius depends on the duration of the event and the speed
of the cloud

@ Speed is determined as orbital speed around the SMBH

Model Leptonic Hadronic
Distance 6.5 x 10 cm 1pc
Speed 51 x108cm/s | 1.9 x 108 cm/s
Radius 1.3x10%cm | 4.9x10™ cm
Density 25x108cm=3 | 1.1 x 10" cm—3
Mass 3.9x10%g 9.1x10% g
Temperature < 27K < 27K

@ Inferred temperatures very low
@ Maybe not all particles are injected into the jet

Michael Zacharias



Cloud parameters

@ The radius depends on the duration of the event and the speed
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@ Cloud nature:

@ BLR (unlikely)
@ Star forming region
@ Atmosphere of a red giant star
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Cloud parameters

@ The radius depends on the duration of the event and the speed
of the cloud

@ Speed is determined as orbital speed around the SMBH

Model Leptonic Hadronic
Distance 6.5 x 10 cm 1pc
Speed 5.1 x108cm/s | 1.9 x 108 cm/s
Radius 1.3x10"%cm | 4.9 x10™ cm
Density 25x108cm=3 | 1.1 x 10" cm~3
Mass 3.9x10%g 9.1 x10% g
Temperature < 27K < 27K

@ Cloud nature:

@ BLR (unlikely)
@ Star forming region
@ Atmosphere of a red giant star

@ What is the very-long-term behavior?
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Monitoring of CTA 102
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Monitoring lightcurves (10 years) with Fermi-LAT, Swift-XRT, and ATOM/R. Red lines give 2008-2012 averages.
Note the logarithmic y-axis.

@ Before 2012: very quiet

@ 2012-2016: slight increase in average flux, variable

@ 2016-2018: the average increased significantly, highly variable
@ Something “symmetric” happened
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@ CTA 102 exhibited a ~ 4 months long, symmetrical flare

@ A fast radio knot interacted with a recollimation shock

@ Ablation of a gas cloud could be the cause of this flare/knot
@ The models successfully fit the long-term trend

Michael Zacharias



@ CTA 102 exhibited a ~ 4 months long, symmetrical flare

@ A fast radio knot interacted with a recollimation shock

@ Ablation of a gas cloud could be the cause of this flare/knot

@ The models successfully fit the long-term trend

@ “Cloud” could be a red giant star or part of a star forming region

@ This scenario might also explain the 2-year symmetry in the total
lightcurve
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@ CTA 102 exhibited a ~ 4 months long, symmetrical flare

@ A fast radio knot interacted with a recollimation shock

@ Ablation of a gas cloud could be the cause of this flare/knot

@ The models successfully fit the long-term trend

@ “Cloud” could be a red giant star or part of a star forming region

@ This scenario might also explain the 2-year symmetry in the total
lightcurve

Paper 1: MZ et al., 2017, ApJ, 851, 72
Paper 2: MZ et al., 2019, ApJ, 871, 19
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@ CTA 102 exhibited a ~ 4 months long, symmetrical flare

@ A fast radio knot interacted with a recollimation shock

@ Ablation of a gas cloud could be the cause of this flare/knot

@ The models successfully fit the long-term trend

@ “Cloud” could be a red giant star or part of a star forming region

@ This scenario might also explain the 2-year symmetry in the total
lightcurve

Paper 1: MZ et al., 2017, ApJ, 851, 72
Paper 2: MZ et al., 2019, ApJ, 871, 19

Thank you for your attention!

Michael Zacharias
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Leptonic model: Spectrum and parameters

e @ Jet parameters:

@ BH distance: 6.5 x 10" cm
Doppler factor: 35
Source radius: 2.5 x 10’ cm
Magnetic field: 3.7 G
Injection luminosity: 2.2 x 10*3 erg/s
min. Lorentz factor: 13
max. Lorentz factor: 3000
e~ spectral index: 2.4
Escape time scaling: 10
Acceleration scaling: 1
BLR temperature: 5 x 10* K

Spectra for a few time steps
(data: MJD 57670 (black) and MJD 57745
(red)).

@ Inj.lum. variation: 1.75 x 10*3 erg/s
@ e~ spc.ind. variation: —0.6

@ Observables:

@ Accretion disk: 3.8 x 10*6 erg/s
@ BH mass: 8.5 x 108 M,

@ BLR luminosity: 4.14 x 10*® erg/s
@ BLRradius: 6.7 x 10" cm
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Leptonic model: Spectrum and parameters

@1 @ Jet parameters:

@ BH distance: 6.5 x 10" cm
Doppler factor: 35

Source radius: 2.5 x 10’ cm
Magnetic field: 3.7 G
Injection luminosity: 2.2 x 10*3 erg/s
min. Lorentz factor: 13

max. Lorentz factor: 3000
e~ spectral index: 2.4
Escape time scaling: 10
Acceleration scaling: 1

BLR temperature: 5 x 10* K
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Particle distribution and cooling

rate.

@ Inj.lum. variation: 1.75 x 10*3 erg/s
@ e~ spc.ind. variation: —0.6

@ Observables:

@ Accretion disk: 3.8 x 10*6 erg/s
@ BH mass: 8.5 x 108 M,

@ BLR luminosity: 4.14 x 10*® erg/s
@ BLRradius: 6.7 x 10" cm
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Hadronic model: Spectrum and parameters
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Spectra for a few time steps.

@ Jet parameters:

Michael Zacharias

BH distance: 3.09 x 10'8 cm
Doppler factor: 35

Source radius: 2.0 x 10’ cm
Magnetic field: 60 G

Injection luminosity p:

1.3 x 10* erg/s

min. Lorentz factor p: 1.0 x 108
max. Lorentz factor p: 1.0 x 10°
spectral index p: 2.4

Injection luminosity e:

3.2 x 10*" erg/s

min. Lorentz factor e: 200

max. Lorentz factor e: 3000
spectral index e: 2.8

Escape time scaling: 5
Acceleration scaling: 30

Inj.lum. variation p: 5.0 x 10%3 erg/s
spc.ind. variation p: —0.3
Inj.lum. variation e: 8.0 x 10*! erg/s



Hadronic model: Spectrum and parameters
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Particle distribution and cooling

time.

@ Jet parameters:
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BH distance: 3.09 x 10'8 cm
Doppler factor: 35

Source radius: 2.0 x 10’ cm
Magnetic field: 60 G

Injection luminosity p:

1.3 x 10* erg/s

min. Lorentz factor p: 1.0 x 108
max. Lorentz factor p: 1.0 x 10°
spectral index p: 2.4

Injection luminosity e:

3.2 x 10*" erg/s

min. Lorentz factor e: 200

max. Lorentz factor e: 3000
spectral index e: 2.8

Escape time scaling: 5
Acceleration scaling: 30
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Ablation of a gas cloud

@ Calculation of dN requires
the density profile p of the
gas cloud

@ Assuming an isothermal gas
cloud held by its own gravity:

-2
r
~ 1 _—
g ( " TO)
with rp oc (Tem 1)1/2

o T.: Temperature of the gas

cloud
@ ny: Central density of the

gas cloud

dv

Ablation of a gas cloud by the
relativistic jet.
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Cloud structure
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Density profile of an isothermal cloud
(numerical = solid; approximation = dashed).
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Particle number per slice of an
isothermal cloud (numerical = solid;
approximation = dashed).
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@ Isothermal, self-gravitating
cloud:

d (rPdp >
o (Gar) =

e r: radius
@ p: density
e 7= kgT./(47m,G)

@ Approximate solution:

@ N = \/3T/p0

@ po: central density

@ Integration over slice volume
gives particle number per slice



Ram pressure vs gravity

@ Ram pressure of the jet can overcome the gravitational pressure
that confines the cloud

@ Minimum density of the jet to ablate a gas cloud (assuming no
relativistic protons):

_ a ! [ —1 r—1 —1
Nj e min Z 2.8 x10 12 (ﬁ) <1(/)> < /9 >

Me Re \ 2 4
X<0.01M@)<1015cm> em

@ Thermal pressure of the cloud (and maybe magnetic field
pressure) are neglected

@ Even a solar-like star might be stripped of its outer envelope
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