CTA 102 – year over year receiving you

Michael Zacharias.

M. Böttcher, F. Jankowsky, J.-P. Lenain, S. Wagner, A. Wierzcholska

Theoretische Physik IV. Ruhr-Universität Bochum, Germany Centre for Space Research, North-West University Potchefstroom, South Africa

> HEPRO VII Barcelona Jul 10, 2019

RUHR **BOCHUM**

CTA 102

Daily fluxes of CTA 102 in 2016 and 2017 observed with (a) Fermi-LAT, (b) Swift-XRT, and (c) ATOM.

- CTA 102 is an FSRQ at z = 1.037
- Late 2016 till early 2017:
 - A roughly 4 months long flare at γ-ray, X-ray, and optical energies
 - Fluxes rose and fell steadily and symmetrically with short spikes on top
 - Optical flux rose a factor
 ~ 100
 - ullet HE flux rose a factor ~ 50
 - A fast moving knot ($\delta \sim$ 35) interacted with a standing feature
- What can cause such a flare?
- Where did the knot come from?

Daily fluxes of CTA 102 in 2016 and 2017 observed with (a) Fermi-LAT, (b) Swift-XRT, and (c) ATOM.

- CTA 102 is an FSRQ at z = 1.037
- Late 2016 till early 2017:
 - A roughly 4 months long flare at γ-ray, X-ray, and optical energies
 - Fluxes rose and fell steadily and symmetrically with short spikes on top
 - Optical flux rose a factor
 ~ 100
 - ullet HE flux rose a factor ~ 50
 - A fast moving knot ($\delta \sim$ 35) interacted with a standing feature
- What can cause such a flare?
- Where did the knot come from?

CTA 102

Distance of VLBI components from the core (Casadio+19).

- CTA 102 is an FSRQ at z = 1.037
- Late 2016 till early 2017:
 - A roughly 4 months long flare at γ-ray, X-ray, and optical energies
 - Fluxes rose and fell steadily and symmetrically with short spikes on top
 - Optical flux rose a factor
 ~ 100
 - $\bullet~$ HE flux rose a factor ~ 50
 - A fast moving knot ($\delta \sim$ 35) interacted with a standing feature
- What can cause such a flare?
- Where did the knot come from?

CTA 102

Distance of VLBI components from the core (Casadio+19).

- CTA 102 is an FSRQ at z = 1.037
- Late 2016 till early 2017:
 - A roughly 4 months long flare at γ-ray, X-ray, and optical energies
 - Fluxes rose and fell steadily and symmetrically with short spikes on top
 - Optical flux rose a factor
 ~ 100
 - \bullet HE flux rose a factor ~ 50
 - A fast moving knot ($\delta \sim$ 35) interacted with a standing feature
- What can cause such a flare?
- Where did the knot come from?

Ablation of a gas cloud

Ablation of a gas cloud by the relativistic jet.

- A gas cloud (black circle) enters the jet (gray area)
- The jet's ram pressure (red arrow) ablates the cloud's material that has already entered (orange arrow)
- The volume dV ablated in a time interval dt changes over time
- The number dN of ablated particles during dt changes over time

Ablation of a gas cloud

Ablation of a gas cloud by the relativistic jet.

- Integration of ρ over dV gives dN
- At any given time t since first contact, the injection term becomes

$$Q_{
m inj} \propto {
m ln} \left(rac{t_0^2 + t_c^2}{t_0^2 + (t_c - t)^2}
ight)$$

with

- $t_c = \delta v_c R_c$
- $t_0 = \delta v_c r_0$
- \bullet δ : Doppler factor of the jet
- v_c: Speed of the gas cloud
- R_c: Radius of the gas cloud
- $r_0 \propto (T_c n_0^{-1})^{1/2}$

Results

Model lightcurves (red) for (a) Fermi-LAT, (b) Swift-XRT, and (c) ATOM/R.

- The resulting lightcurves fit very well the long-term trend
- 1) Leptonic one-zone model
 - Only location: outer edge of the BLR
- 2) Hadronic one-zone model
 Different locations possible
- Cloud parameters inferred from modeling

Results

Model lightcurves (red) for (a) Fermi-LAT, (b) Swift-XRT, (c) ATOM/R, and (d) Swift-UVOT/V.

- The resulting lightcurves fit very well the long-term trend
- 1) Leptonic one-zone model
 - Only location: outer edge of the BLR
- 2) Hadronic one-zone model
 - Different locations possible
- Cloud parameters inferred from modeling

Results

Model lightcurves (red) for (a) Fermi-LAT, (b) Swift-XRT, (c) ATOM/R, and (d) Swift-UVOT/V.

- The resulting lightcurves fit very well the long-term trend
- 1) Leptonic one-zone model
 - Only location: outer edge of the BLR
- 2) Hadronic one-zone model
 - Different locations possible
- Cloud parameters inferred from modeling

- The radius depends on the duration of the event and the speed of the cloud
- Speed is determined as orbital speed around the SMBH

Model	Leptonic	Hadronic
Distance	$6.5 \times 10^{17} \text{cm}$	1 pc
Speed	$5.1 \times 10^{8} \text{cm/s}$	$1.9 \times 10^{8} \text{ cm/s}$
Radius	$1.3 \times 10^{15} \text{cm}$	$4.9 \times 10^{14} \text{ cm}$
Density	$2.5 \times 10^{8} \text{cm}^{-3}$	$1.1 \times 10^7 \text{ cm}^{-3}$
Mass	$3.9 \times 10^{30} \mathrm{g}$	9.1×10^{27} g
Temperature	< 2.7 K	≪ 2.7 K

- The radius depends on the duration of the event and the speed of the cloud
- Speed is determined as orbital speed around the SMBH

Model	Leptonic	Hadronic
Distance	$6.5 \times 10^{17} \text{cm}$	1 pc
Speed	$5.1 \times 10^{8} \text{cm/s}$	1.9×10^8 cm/s
Radius	$1.3 imes 10^{15}\mathrm{cm}$	$4.9 \times 10^{14} \text{ cm}$
Density	$2.5 \times 10^{8} \text{cm}^{-3}$	$1.1 \times 10^7 \text{ cm}^{-3}$
Mass	$3.9 \times 10^{30} \mathrm{g}$	$9.1 \times 10^{27} \text{ g}$
Temperature	< 2.7 K	≪ 2.7 K

- Inferred temperatures very low
 - Maybe not all particles are injected into the jet

- The radius depends on the duration of the event and the speed of the cloud
- Speed is determined as orbital speed around the SMBH

Model	Leptonic	Hadronic
Distance	$6.5 \times 10^{17} \text{cm}$	1 pc
Speed	$5.1 \times 10^{8} \text{cm/s}$	$1.9 imes 10^8$ cm/s
Radius	$1.3 imes 10^{15}\mathrm{cm}$	$4.9 \times 10^{14} \text{ cm}$
Density	$2.5 \times 10^{8} \text{cm}^{-3}$	$1.1 \times 10^7 \text{ cm}^{-3}$
Mass	$3.9 \times 10^{30} \mathrm{g}$	$9.1 \times 10^{27} \text{ g}$
Temperature	$< 2.7\mathrm{K}$	≪ 2.7 K

- Cloud nature:
 - BLR (unlikely)
 - Star forming region
 - Atmosphere of a red giant star
- What is the very-long-term behavior?

- The radius depends on the duration of the event and the speed of the cloud
- Speed is determined as orbital speed around the SMBH

Model	Leptonic	Hadronic
Distance	$6.5 \times 10^{17} \text{cm}$	1 pc
Speed	$5.1 \times 10^{8} \text{cm/s}$	$1.9 imes 10^8$ cm/s
Radius	$1.3 imes 10^{15}\mathrm{cm}$	$4.9 \times 10^{14} \text{ cm}$
Density	$2.5 imes 10^8 cm^{-3}$	$1.1 \times 10^7 \text{ cm}^{-3}$
Mass	$3.9 \times 10^{30} \mathrm{g}$	$9.1 \times 10^{27} \text{ g}$
Temperature	$< 2.7\mathrm{K}$	≪ 2.7 K

- Cloud nature:
 - BLR (unlikely)
 - Star forming region
 - Atmosphere of a red giant star
- What is the very-long-term behavior?

Monitoring of CTA 102

Monitoring lightcurves (10 years) with *Fermi-LAT*, *Swift-XRT*, and ATOM/R. Red lines give 2008-2012 averages. Note the logarithmic y-axis.

- Before 2012: very quiet
- 2012-2016: slight increase in average flux, variable
- 2016-2018: the average increased significantly, highly variable
- Something "symmetric" happened

- ullet CTA 102 exhibited a \sim 4 months long, symmetrical flare
- A fast radio knot interacted with a recollimation shock
- Ablation of a gas cloud could be the cause of this flare/knot
- The models successfully fit the long-term trend
- "Cloud" could be a red giant star or part of a star forming region
- This scenario might also explain the 2-year symmetry in the total lightcurve

```
Paper 1: MZ et al., 2017, ApJ, 851, 72
Paper 2: MZ et al., 2019, ApJ, 871, 19
```

- ullet CTA 102 exhibited a \sim 4 months long, symmetrical flare
- A fast radio knot interacted with a recollimation shock
- Ablation of a gas cloud could be the cause of this flare/knot
- The models successfully fit the long-term trend
- "Cloud" could be a red giant star or part of a star forming region
- This scenario might also explain the 2-year symmetry in the total lightcurve

```
Paper 1: MZ et al., 2017, ApJ, 851, 72
Paper 2: MZ et al., 2019, ApJ, 871, 19
```

- \bullet CTA 102 exhibited a \sim 4 months long, symmetrical flare
- A fast radio knot interacted with a recollimation shock
- Ablation of a gas cloud could be the cause of this flare/knot
- The models successfully fit the long-term trend
- "Cloud" could be a red giant star or part of a star forming region
- This scenario might also explain the 2-year symmetry in the total lightcurve

Paper 1: MZ et al., 2017, ApJ, 851, 72 Paper 2: MZ et al., 2019, ApJ, 871, 19

- \bullet CTA 102 exhibited a \sim 4 months long, symmetrical flare
- A fast radio knot interacted with a recollimation shock
- Ablation of a gas cloud could be the cause of this flare/knot
- The models successfully fit the long-term trend
- "Cloud" could be a red giant star or part of a star forming region
- This scenario might also explain the 2-year symmetry in the total lightcurve

Paper 1: MZ et al., 2017, ApJ, 851, 72 Paper 2: MZ et al., 2019, ApJ, 871, 19

Thank you for your attention!

Backup

Leptonic model: Spectrum and parameters

Figure 1: Spectra for a few time steps (data: MJD 57670 (black) and MJD 57745 (red)).

Jet parameters:

• BH distance: 6.5×10^{17} cm

Doppler factor: 35

Source radius: 2.5 × 10¹⁶ cm

Magnetic field: 3.7 G

Injection luminosity: 2.2 × 10⁴³ erg/s

min. Lorentz factor: 13
max. Lorentz factor: 3000

e - spectral index: 2.4
Escape time scaling: 10

Acceleration scaling: 1
 BLR temperature: 5 × 10⁴ K

• Inj.lum. variation: 1.75×10^{43} erg/s

e[−] spc.ind. variation: −0.6

Observables:

Accretion disk: 3.8 × 10⁴⁶ erg/s

 $\bullet~$ BH mass: $8.5\times10^8\,M_{\odot}$

BLR luminosity: 4.14 × 10⁴⁵ erg/s

 \bullet BLR radius: 6.7×10^{17} cm

Leptonic model: Spectrum and parameters

Figure 1: Particle distribution and cooling rate.

Jet parameters:

ullet BH distance: $6.5 \times 10^{17} \, \text{cm}$

Doppler factor: 35

• Source radius: 2.5×10^{16} cm

Magnetic field: 3.7 G

Injection luminosity: 2.2 × 10⁴³ erg/s

min. Lorentz factor: 13
max. Lorentz factor: 3000

e - spectral index: 2.4
Escape time scaling: 10

Acceleration scaling: 1

BLR temperature: 5 × 10⁴ K

• Inj.lum. variation: 1.75×10^{43} erg/s

e⁻ spc.ind. variation: -0.6

Observables:

Accretion disk: 3.8 × 10⁴⁶ erg/s

 $\bullet~BH$ mass: $8.5\times10^8\,M_{\odot}$

BLR luminosity: 4.14 × 10⁴⁵ erg/s

 \bullet BLR radius: 6.7×10^{17} cm

Hadronic model: Spectrum and parameters

Figure 2: Spectra for a few time steps.

Jet parameters:

• BH distance: 3.09×10^{18} cm

Doppler factor: 35

Source radius: 2.0 × 10¹⁶ cm

 Magnetic field: 60 G
 Injection luminosity p: 1.3 × 10⁴⁴ erg/s

min. Lorentz factor p: 1.0 × 10⁶

max. Lorentz factor p: 1.0 × 10⁹

spectral index p: 2.4

 Injection luminosity e: 3.2 × 10⁴¹ erg/s

min. Lorentz factor e: 200

max. Lorentz factor e: 3000spectral index e: 2.8

Escape time scaling: 5
Acceleration scaling: 30

• Inj.lum. variation p: 5.0×10^{43} erg/s

spc.ind. variation p: −0.3

• Inj.lum. variation e: 8.0×10^{41} erg/s

Hadronic model: Spectrum and parameters

Figure 2: Particle distribution and cooling time.

Jet parameters:

• BH distance: 3.09×10^{18} cm

Doppler factor: 35

Source radius: 2.0 × 10¹⁶ cm

 Magnetic field: 60 G
 Injection luminosity p: 1.3 × 10⁴⁴ erg/s

min. Lorentz factor p: 1.0 × 10⁶

max. Lorentz factor p: 1.0 × 10⁹

spectral index p: 2.4

 Injection luminosity e: 3.2 × 10⁴¹ erg/s

min. Lorentz factor e: 200

max. Lorentz factor e: 3000

spectral index e: 2.8
Escape time scaling: 5
Acceleration scaling: 30

• Inj.lum. variation p: 5.0×10^{43} erg/s

spc.ind. variation p: −0.3

• Inj.lum. variation e: 8.0×10^{41} erg/s

Ablation of a gas cloud

Figure 3: Ablation of a gas cloud by the relativistic jet.

- Calculation of dN requires the density profile ρ of the gas cloud
- Assuming an isothermal gas cloud held by its own gravity:

$$\rho \sim \left(1 + \frac{r}{r_0}\right)^{-2}$$

with $r_0 \propto (T_c n_0^{-1})^{1/2}$

- *T_c*: Temperature of the gas cloud
- n₀: Central density of the gas cloud

Cloud structure

Figure 4: Density profile of an isothermal cloud (numerical = solid; approximation = dashed).

Figure 5: Particle number per slice of an isothermal cloud (numerical = solid; approximation = dashed).

Isothermal, self-gravitating cloud:

$$\tau \frac{\mathrm{d}}{\mathrm{d}r} \left(\frac{r^2}{\rho} \frac{\mathrm{d}\rho}{\mathrm{d}r} \right) = -\rho r^2$$

- r: radius
- ρ : density
- $\bullet \ \tau = k_B T_c / (4\pi m_p G)$

Approximate solution:

$$\rho(r) = \frac{\rho_0}{\left(1 + \frac{r}{r_0}\right)^2}$$

- $r_0 = \sqrt{3\tau/\rho_0}$
- ρ_0 : central density
- Integration over slice volume gives particle number per slice

Ram pressure vs gravity

- Ram pressure of the jet can overcome the gravitational pressure that confines the cloud
- Minimum density of the jet to ablate a gas cloud (assuming no relativistic protons):

$$n_{j,e,\min} \gtrsim 2.8 \times 10^{-12} \left(\frac{a}{0.1}\right)^{-1} \left(\frac{\Gamma_{j}}{10}\right)^{-1} \left(\frac{\Gamma_{j}-1}{9}\right)^{-1} \times \left(\frac{M_{c}}{0.01M_{\odot}}\right) \left(\frac{R_{c}}{10^{15} \, \text{cm}}\right)^{-2} \, \text{cm}^{-3}$$

- Thermal pressure of the cloud (and maybe magnetic field pressure) are neglected
- Even a solar-like star might be stripped of its outer envelope