

**ISDC** CENTRE FOR ASTROPHYSICS

UNIVERSITÉ

**DE GENÈVE** 

FACULTÉ DES SCIENCE

# 5.5 years multi-wavelength variability of Mrk 421: evidence of leptonic emission from radio to TeV

Vitalii Sliusar, Roland Walter, Matteo Balbo for the FACT Collaboration University of Geneva, Department of Astronomy, ISDC





#### technische universität dortmund



**HEPRO VII, July 10, 2019** 



### Outline

- The multi-wavelength observations of Mrk 421
- HBL blazar Mrk 421
- Light curves and flares
- Crosscorrelations of light curves
- Synthetic radio light curve
- Blazars observations strategies
- Summary and conclusions









### **FACT: First G-APD Cherenkov Telescope**

1 Pixel = 1 SiPM = 3600 G-APD cells







- Located at La Palma, Roque de Los Muchachos, 2200 m a.s.l.
- Operational since October 2011
- Mirror area: 9.5 m<sup>2</sup> (ø3.8 m)
- Camera FOV 4.5°, comprised of 1440 pixels (0.11° / pixel)
- Silicon based photo sensors (G-APDs): observations with strong moon light possible
- Operated fully remotely, large duty cycle (>2500h of data in 12 months)
- Integrated sensitivity: 0.137 ± 0.004 Crab / 50h
- Unbiased monitoring strategy:
  - Blazars, quasars, AGNs: Mrk 421, Mrk 501, 1ES 2344+51.4, 1ES 1959+650, PKS 0736+01, IC 310
  - Crab
  - Multi-Messenger and MWL alerts: AMON20160218, HESE20160427, HESE20160731, V404 Cyg.
- Quick Look Analysis (QLA)



## **FACT: performance**

- Energy range: 300 GeV 10 TeV
- 2.2, e.g. Mrk 421)
- Unfolded energy spectrum of the Crab Nebula:



F. Temme et al., PoS, ICRC 2015





#### • Energy threshold: 540 GeV (Crab-Nebula-like spectrum) or ~580 GeV (PL spectral index









# Multi-wavelength campaign



#### December 14, 2012 - April 18, 2018

| Instrument                                 | Band                          | Data                       |
|--------------------------------------------|-------------------------------|----------------------------|
| FACT                                       | > 580 GeV                     | 584 nights / 2071 hours    |
| Fermi-LAT                                  | 100 MeV - 300 GeV             | 1915 days                  |
| SWIFT/BAT                                  | X-rays, 15-50 keV             | 1706 days (29344 orb.per.) |
| MAXI                                       | 2-20 keV                      | 1181 days (18896 orb.per.) |
| Swift/XRT                                  | 0.3-2 keV, 2-10 keV           | 478 days / 652 hours       |
| Swift/UVOT                                 | UV (UVW1, UVM2, UVW2 filters) | 752 measurements           |
| uiper (1.54 m) & Bok (2.3 m)<br>telescopes | V-band                        | 379 measurements           |
| OVRO (40 m)                                | Radio, 15GHz                  | 329 measurements           |
|                                            |                               |                            |



















### **Mrk 421**











## Mrk 421: SED fittings









| Parameter                                                          | Symbol            | Value               |
|--------------------------------------------------------------------|-------------------|---------------------|
| Doppler factor                                                     | δ                 | 12                  |
| Magnetic field (G)                                                 | В                 | 50                  |
| Comoving blob radius (cm)                                          | R                 | $4 \times 10^1$     |
| Power-law index of the injected electron distribution <sup>a</sup> | $\alpha_e$        | 1.9                 |
| Power-law index of the injected proton distribution <sup>a</sup>   | $\alpha_p$        | 1.9                 |
| Minimum electron Lorentz factor                                    | $\gamma_{e,\min}$ | $7 \times 10^2$     |
| Maximum electron Lorentz factor                                    | $\gamma_{e,\max}$ | $4 \times 10^4$     |
| Minimum proton Lorentz factor <sup>b</sup>                         | $\gamma_{p,\min}$ | 1                   |
| Maximum proton Lorentz factor                                      | $\gamma_{p,\max}$ | $2.3 \times 10^{9}$ |
| Energy density in protons (erg $cm^{-3}$ )                         | $u'_p$            | 510                 |
| Ratio of number of electrons with respect to protons               | e/p               | 90                  |
| Jet power (erg s <sup><math>-1</math></sup> )                      | Pjet              | $4.5 \times 10^{4}$ |









![](_page_7_Picture_2.jpeg)

### Variability and Fvar

![](_page_8_Figure_1.jpeg)

![](_page_8_Picture_2.jpeg)

**Arbet-Engels et al. (submitted)** 

![](_page_8_Picture_4.jpeg)

![](_page_8_Picture_6.jpeg)

![](_page_8_Picture_7.jpeg)

![](_page_8_Picture_8.jpeg)

### Crosscorrelations

- (1σ) days X-ray lagging behind
- Optical variability is leading by 30-70 days
- GeV and radio light curves are broadly correlated. GeV variability leads by 40-70 days.
- GeV is not correlated with TeV and X-rays
- Observed variability compliant with SSC

FACULTÉ DES SCIENCES

![](_page_9_Figure_6.jpeg)

**Arbet-Engels et al. (submitted)** 

![](_page_9_Picture_8.jpeg)

V. Sliusar | Mrk 421 multi-wavelength variability | HEPRO VII 10.07.06.2019 10

![](_page_9_Picture_10.jpeg)

| 4 |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

### **GeV - radio response**

![](_page_10_Figure_1.jpeg)

![](_page_10_Picture_2.jpeg)

**Arbet-Engels et al. (submitted)** 

![](_page_10_Picture_4.jpeg)

![](_page_10_Figure_5.jpeg)

- Conical jet model used (Türler et al. 1999, • Esposito et. 2015)
- 43 days delay of the response consistent with GeV - radio cross correlations
- Profile has fast rising time (~7 days) and the a slow decay over ~150 days
- GeV light curve convolution with response profile  $\bullet$ explains all but one fast radio flare (MJD 56897)

![](_page_10_Picture_11.jpeg)

#### **Blazars observations strategies**

- Inline with CTA AGN KSPs:
- long-term unbiased monitoring (30 min / 2 weeks ~ 12h / year)
- high-quality spectra and time-resolved spectra
- AGN flare monitoring from external triggers (Fermi, Swift, HAWC, ...)
- Unbiased monitoring with great sensitivity:
  - short-term flares detection (TeV counterpart shorttime scale X-ray flares (Paliya et al. 2015))
  - emission model constrains from cooling time and correlations
  - (quasi) periodicities
  - breaks in power spectra
  - size (location, geometry, nature) of emission region
- Triggered flare monitoring:
  - MWL observation
  - Spectrum-brightness dependence verification

![](_page_11_Picture_14.jpeg)

![](_page_11_Picture_16.jpeg)

![](_page_11_Figure_17.jpeg)

## **Summary and conclusions**

- models  $\geq 20$  G.
- Within the shock in a jet model the estimated and observed cooling times are compatible with SSC (except radio), while being incompatible in X-rays and TeV for leptono-hadronic and hadronic models.
- The strongest variations of Mrk 421 occur in the X-ray and in the TeV bands.
- X-ray and TeV flares are very well correlated (93% of the TeV flares were detected in the X-rays). The lag between the TeV and X-ray variations could be estimated as 0.26±0.46 days, almost ten times more constraining than ever before.
- The radio emission can be reproduced accurately by convolving the GeV light curve by a delayed response (a fast rise and a slower decay after a delay of  $\approx 43$ days). This is a strong indication that synchrotron processes dominate the low energy emission component.

![](_page_12_Picture_6.jpeg)

![](_page_12_Picture_7.jpeg)

![](_page_12_Picture_8.jpeg)

• One-zone SSC model requires magnetic fields of  $\leq 0.1$  G, while leptono-hadronic

![](_page_12_Picture_11.jpeg)

![](_page_12_Picture_12.jpeg)

![](_page_12_Picture_13.jpeg)

![](_page_13_Picture_0.jpeg)

# Thank you for your attention!

Credit: Ivan Jimenez, ESA

![](_page_13_Picture_3.jpeg)