THE THEORY OF PULSAR WIND NEBULAE: RECENT PROGRESS

Elena Amato INAF-Osservatorio Astrofisico di Arcetri

Collaborators: Jonathan Arons, Niccolo' Bucciantini, Luca Del Zanna, Barbara Olmi, Delia Volpi, Andrea Mignone

PULSAR WIND NEBULAE

MAIN OPEN QUESTIONS

WE KNOW THAT:

- MOST EFFICIENT ACCELERATORS IN NATURE
- ACCELERATION IN THE MOST HOSTILE ENVIRONMENT
- MAIN ANTIMATTER REPOSITORIES IN THE GALAXY
- ENERGY FLUX THAT LEAVES THE PSR

$$\dot{E}_{R} = \kappa \dot{N}_{GJ} m_{\pm} c^{2} \Gamma_{wind} \left(1 + \frac{m_{i}}{\kappa m_{\pm}}\right) (1 + \sigma)$$

WE DO NOT KNOW:

• WHAT THE ACCELERATION MECHANISM(S) IS (ARE)

POSSIBILITIES DEPEND ON:

COMPOSITION (IONS? MULT.?)

IN PRINCIPLE BOTH DEPEND ON WHERE PARTICLE ACCELERATION EXACTLY OCCURS

- LMAGNETIZATION(σ =B²/4πnΓmc²)
- HOW PARTICLES ESCAPE

ACCELERATION MECHANISMS

FERMI MECHANISM

MAGNETIZATION

DRIVEN MAGNETIC RECONNECTION ____

PULSAR MULTIPLICITY AND MAGNETIZATION

RESONANT CYCLOTRON ABSORPTION PRESENCE OF IONS AND PULSAR MULTIPLICITY _

$$\dot{E}_{R} = 6 \dot{N}_{GJ} m_{\pm} c^{2} \Gamma_{wind} \left(1 + 6 m_{i} \over \kappa m_{\pm}\right) (1 + 6)$$
PAIRS
$$\sigma = \frac{B^{2}}{4\pi m_{eff} n_{eff} c^{2} \Gamma_{wind}^{2}} 5$$

OTHER RECENT PROPOSALS

- SHOCK CORRUGATION (Lemoine 17)
 - CURRENTLY FORMULATED TOGETHER WITH B DISSIPATION
 - INTERESTING SCENARIO FOR SPEEDING UP FERMI PROCESS
- TURBULENT ACCELERATION AT THE SHOCK (Giacinti & Kirk 18)
 - ASSUMES DIFFERENT TURBULENCE LEVELS AT DIFFERENT SHOCK LATITUDES
 - PRODUCES HARD (STEEP) SPECTRA FOR LOW (HIGH) TURBULENCE LEVEL
 - INTERESTING LATITUDE DEPENDENCE OF SPECTRAL INDEX (SEE LATER)
 - ACCELERATES ONE SIGN OF CHARGES PREFERENTIALLY

QUANTITATIVELY ...

FERMI MECHANISM

- EFFICIENT AT UNMAGNETIZED e⁻-e⁺ RELATIVISTIC SHOCKS
- RIGHT SPECTRUM FOR X-RAYS
- NO ACCELERATION AT (σ>0.001) SUPERLUMINAL SHOCKS (Spitkovsky 08, Sironi & Spitkovsky 09, 11)
- TOO SLOW TO GUARANTEE MAXIMUM ENERGY OBSERVED IN CRAB (e.g. Pelletier+ 17)

DRIVEN MAGNETIC RECONNECTION:

- BROAD PARTICLE SPECTRA WITH α=-1.5 IF σ≥30 AND κ>10⁷ (Sironi & Spitkovsky 11)
- FOR THIS LARGE K WIND LIKELY TO DISSIPATE BEFORE SHOCK FRONT (Kirk & Skjeraasen 03)

RESONANT CYCLOTRON ABSORPTION:

- SPECTRA AND ACCELERATION EFFICIENCY DEPEND ON THE FRACTION OF ENERGY CARRIED BY IONS: $U_i/U_{TOT}=0.8$, $\alpha=-1.5$, $\varepsilon_{ACC}=0.3$, $U_i/U_{TOT}=0.6$, $\alpha=-3$, $\varepsilon_{ACC}=0.03$ (EA & Arons 06, Stockem+12)
- NO ACCELERATION IF k>m_i/m_e

ANALYTIC SPLIT MONOPOLE SOLUTIONS (Michel 73; Bogovalov 99) CONFIRMED BY NUMERICAL STUDIES IN THE FORCE FREE (Contopoulos et al 99, Gruzinov 04, Spitkovsky 06) AND RMHD REGIME (Bogovalov 01, Komissarov 06, Bucciantini+ 06)

JETS AND TORI

A: ULTRARELATIVISTIC PSR WIND B: SUBSONIC EQUATORIAL OUTFLOW C: SUPERSONIC EQUATORIAL FUNNEL

2D RMHD SIMULATIONS

F∝sin²(θ) B_φ∝sin(θ)G(θ) Komissarov & Lyubarsky 03, 04 Del Zanna+ 04, 06 Bogovalov+ 05 Camus+ 09 Volpi+ 08, Olmi+ 14

 E_{max} is evolved. With the flow

 $f(E) \propto E^{-\alpha}$, $E < E_{max}$ (Del Zanna+ 06)

THE PHYSICS BEHIND THEM

 FOR SUFFICIENTLY HIGH σ, EQUIPARTITION IS REACHED IN EQUATORIAL REGION
 EQUATORIAL FLOW IS DIVERTED TOWARDS
 HIGHER LATITUDES
 A FAST CHANNEL THEN FORMS ALONG THE AXIS

JET REQUIRES σ>0.03

0.5

0.0

1.0

-0.5

1.0

WHAT o?

LOW σ leads to lower B field than required to fit integrated spectrum

(Volpi+ 08, Olmi+ 14,

Atoyan & Aharonian 96, de Jager & Harding 92)

DIFFUSIVE SHOCK ACCELERATION

0.0

0.2

0.4

0.6

0.8

3

1.4

1.2

1.0

0.000 0.002 0.004 0.006 0.008 0.010

3D RMHD SIMULATIONS

DIMENSIONALITY OF SIMULATIONS:

•IN 3D SAME σ LOOKS VERY DIFFERENT! •KINKS MAY MESS UP THE FIELD IN THE PWN WITH RELATIVELY LOW DISSIPATION (Begelman 98)

REPRODUCE SPECTRUM AND MORPHOLOGY WITH HIGH σ ?

LONGER 3D RMHD SIMULATIONS

-1.0

-2.0

-3.0

MAGNETIC FIELD STRENGTH

AFTER INITIAL DECREASE (Porth + 13, 14)FIELD STRENGTH **APPROACHES** CONSTANT (Olmi+ 16)

 $\langle B \rangle_V (\mu G)$

300

250

200

150

100

50

0

X-RAYS VS RADIO EMISSION

F~3x10⁶ k~10⁴
FROM OPTICAL/X-RAY EMISSION
(e.q. Kennel & Coroniti 84)

α~2.2

JUST RIGHT FOR FERMI I

NOTE: A GJ DENSITY OF IONS, IF PRESENT, WOULD DOMINATE THE WIND ENERGY FLOW.

PeV IONS

Γ~10⁴ k~10⁶
 FROM RADIO EMISSION
 (e.g. Bucciantini, Arons, EA, 12)
 unless fossile (Atoyan 99)
 or accelerated eslewhere

α~1.5 DRIVEN MAGNETIC RECONNECTION?

NOTE: NO WAY FOR IONS TO BE ENERGETICALLY IMPORTANT EVEN IF THEY WERE THERE¹⁸

RADIO EMISSION MORPHOLOGY

100

200

0

x [arcsec]

UNIFORM

INJECTION

RADIO WISPS

MAGNETIC FIELD

DIFFERENCE BETWEEN IMAGES AT DIFFERENT TIMES

- RADIO EMISSION TRACES MAGNETIC FIELD
- RADIO WISPS EVEN FOR UNIFORM PARTICLE DISTRIBUTION

RADIO WISPS

MAGNETIC FIELD

DIFFERENCE BETWEEN IMAGES AT DIFFERENT TIMES

- RADIO EMISSION TRACES MAGNETIC FIELD
- RADIO WISPS EVEN FOR UNIFORM PARTICLE DISTRIBUTION

WISPS AT MULTIWAVELENGTHS

- 3D MHD SIMULATIONS SEEM TO REQUIRE σ >FEW IN ORDER TO **REPRODUCE SPECTRUM AND MORPHOLOGY**
- FERMI MECHANISM VERY PROBLEMATIC: NOT ONLY HIGH σ BUT ALSO SLOW PROCESS THOUGH LARGE SCALE PERTURBATIONS OF THE SHOCK FRONT (e.g. Lemoine 16) MIGHT SPEED THINGS UP
- DRIVEN MAGNETIC RECONNECTION DIFFICULT TO MAKE SELF-CONSISTENT + IT DISSIPATES B
- WISPS CONSISTENT WITH EQUATORIAL X AND ANY RADIO
- RADIO PARTICLES DO NOT NEED TO BE PART OF THE FLOW
 - > MORE COMFORTABLE k FOR PSR THEORIES (e.g. Timokhin & Harding 19)
- MULTIPLICITY CAN BE SMALL ENOUGH FOR ION CYCLOTRON TO WORK: GOOD NEWS ALSO FOR UHECRS

PARTICLE ESCAPE

TeV halo (Abeysekara+ 17) _{Geminga}

0

BOW SHOCK PULSAR WIND NEBULAE

$$t_{\rm esc} = \left(\frac{3E_{SN}}{2\pi\rho_{\rm ism}V_{\rm psr}^5}\right)^{1/3} \approx 10^5 \text{yr}\left(\frac{E_{51}}{n_1 V_{200}^5}\right)$$

PSR J1741-2054 (Kargaltsev+ 2016)

PSR B0355+54 (Emre+ 2005)

PSR J1509-5850 (Hui & Becker 07, Klinger+ 16)

MOUSE PWN (Yusef-Zadeh & Bally 1987, Yusef-Zadeh & Gaensler 05, Klinger+ 18)

PWN ACCELERATION EFFICIENCY 12% INJECTED SPECTRUM E^{-1.5} E<500 GEV

POSITRON FRACTION

3D MHD SIMULATIONS OF BSPWNe

BOTH **ISOTROPIC** AND **ANISOTROPIC** PSR WIND WITH DIFFERENT **MAGNETIZATION** AND **GEOMETRY**

OVERALL SHAPE NOT MUCH AFFECTED

INTERNAL FLOW STRUCTURE

Olmi & Bucciantini 19

EMISSION PROPERTIES

ISOTROPIC σ =1

ANISOTROPIC σ =0.01

ISOTROPIC WIND ALIGNED ROTATOR

CONFINEMENT IN MAGNETOPAUSE UP TO **RECONNECTION REGION**

ONE-SIDED JETS POSSIBLE

SUMMARY FOR EVOLVED SYSTEMS

- BSPWNe SEEM ABLE TO ACCOUNT FOR 'POSITRON EXCESS' WITH VERY REASONABLE PARAMETERS AND RATHER LOW EFFICIENCIES
- THEIR CONTRIBUTION SEEMS MANDATORY TO ACCOUNT FOR WHEN MODELING CR LEPTONS
- BETTER MODELING OF DYNAMICS, PARTICLE EVOLUTION AND PARTICLE ESCAPE URGENTLY NEEDED!!!

PARTICLE SPECTRA AND ACCELERATION EFFICIENCY

IF •IONS CARRY MOST OF THE ENERGY: κ<m_i/m_e •WIND SUFFICIENTLY COLD: δu/u<m_e/m_i

RESULTS BY Amato & Arons 06 RECENTLY CONFIRMED BY Stockem et al 12^{36}

PROTONS AND PRIMARY ELECTRONS INJECTED FROM SNRS WITH SPECTRUM AS FROM NEWEST AMS-02 DATA (Aguilar et al 15) AND 10% EFFICIENCY

DIFFUSION THROUGH THE GALAXY A LA KOLOMOGOROV: $D(E) \approx E^{1/3}$ (Aguilar et al 16)

LOSSES THROUGH ICS AND SYNCHROTRON IN 3 μ G FIELD

CONTRIBUTING SOURCES

10 GeV

100 GeV

1 TeV

