Nucleon elastic form factors encode crucial information about its charge and
magnetization distributions. For many decades, nucleon form factors were studied by
using unpolarized electron-nucleon cross section measurements. The advent of electron
beams with higher luminosities and beam polarization coupled with large acceptance
detectors, polarized targets and recoil polarimeters enabled a...
The ALICE experiment, optimized to study nuclei collisions at the ultra-relativistic energies provided by the LHC, is approaching to a new upgrade phase, foreseen in 2026 during the third Long Shutdown of the accelerator. This upgrade includes the replacement of the 3 innermost layers of the Inner Tracking System, the detector closest to the interaction point, which is currently made of 7...
ePIC will be a general-purpose detector designed to enalbe the entire physics program of the Electron-Ion Collider (EIC) at BNL, USA. Several key physics measurements depend on efficient Particle Identification (PID). The PID system of ePIC covers a wide pseudorapidity (-3.3<η<3.5) and momentum range. Several technologies have been identified to serve such purpose.
In the forward region...
R&D efforts are ongoing to develop the Cylindrical Micromegas Barrel Layer (CyMBaL) for the central region of the ePIC detector, the first experiment at the future Electron Ion Collider (EIC).
The Micromegas detectors will be a part of a multi-technology tracker that needs to fit inside a 1.7 T solenoid, bringing stringent constraints on space. Additionally, a low material budget is necessary...
CEBAF at Jefferson Lab delivers the world's highest intensity and highest precision multi-GeV electron beam to study strong interactions in the nonperturbative regime. The current program at 12 GeV is well underway and the CEBAF community is looking toward its future at the science that could be obtained through a future upgrade at higher beam energy. JLab at 22 GeV will provide unique,...
The Super Tau Charm Facility (STCF), a planned symmetric electron-positron collider in China, aims to facilitate $e^+e^−$ collisions across a center-of-mass energy range of 2 to 7 GeV, targeting a peak luminosity of $0.5×10^{35}\mathrm{cm}^{−2}\mathrm{s}^{−1}$. With an anticipated annual integrated luminosity exceeding $1~ab^{−1}$, the STCF is poised to generate vast datasets. These will...
The CERN secondary beam lines of the North and the East Area are designed to deliver beams of secondary and tertiary particles as well as attenuated primary protons and ions from the SPS and PS accelerators. With its diverse portfolio, the CERN experimental areas serve over 200 test beams and experiments per year with more than 2000 users. In context of the Physics Beyond Colliders (PBC)...
One of the future plans at Jefferson Lab is running electron scattering experiments with large acceptance detectors at luminosities of 1037 cm−2s−1. These experiments allow the measurements of the Double Deeply Virtual Compton Scattering (DDVCS) reaction, an important physics process in the formalism of Generalized Parton Distributions, which has never been measured because of its low rate....
The ePIC experiment at the Electron-Ion Collider (EIC) includes a dual-radiator RICH (dRICH) detector for PID in the forward region. This is to provide hadron particle identification capability to the experiment for the in-depth investigation of the nucleon structure planned at the EIC, enabling in particular the study of Semi-Inclusive DIS (SIDIS) events. SIDIS events probe the confined...
A fixed-target experiment at LHC to measure directly the dipole moments of charm baryons is presented. The experimental approach is based on the phenomenon of spin precession for channeled particles in bent crystals and on the precise measurement of the charm baryon polarisation. The measurement of the magnetic moment of charm baryons would allow to determine the charm quark magnetic moment. A...
Electromagnetic form factors, which are accessible via elastic electron scattering, encapsulate information on the charge and current structure inside the nucleons. The data on the nucleon form factors allows flavour separation analysis, for which early measurements have provided striking results indicating to a di-quark component in a nucleon. Form factors also provide important constraints...
The progress towards the direct measurement of electric and magnetic dipole moments of Lambda baryons at LHCb is presented. In addition, the measurement of magnetic dipole moments for particles and antiparticles would allow a test of the CPT symmetry. The experimental technique is based on the spin precession of Lambda baryons in the dipole magnet of the LHCb tracking system. Lambda baryons...
An experimental program has been approved at the Thomas Jefferson National Accelerator Facility to measure the (ep,e’K+)Y reactions to study the spectrum and structure of excited nucleon states. New data from CLAS12 on πN, ππN, and KY electroproduction have been obtained using electron beams with energies of 6.5 and 7.5 impinging upon a liquid hydrogen target. Scattered electrons have been...