Speaker
Description
The fundamental QCD symmetries at low energies and the new physics Beyond the Standard Model (BSM) are two frontiers in the contemporary physics. The Primakoff effect, a process of high-energy photo- or electro-production of mesons in the Coulomb field of a target offers a powerful experimental tool to explore both fundamental issues. A comprehensive Primakoff experimental program has been developed at Jefferson Laboratory (JLab) to perform precision measurements of the two-photon decay widths and the transition form factors of $\pi^0$, η and ηꞌ and to search for dark scalars or pseudoscalars via the Primakoff effect. A measurement of the $\pi^0\rightarrow\gamma\gamma$ radiative decay width was carried out at JLab 6 GeV and the published result achieved a precision of 1.5%. The data collection for the η radiative decay width measurement at JLab 12 GeV was completed in 2022 and data analysis is in progress. The future JLab 22 GeV upgrade will offer a new opportunity to perform the Primakoff experiments off an atomic-electron target with experimental sensitivities not previously achievable. The status of this program and its physics impact will be presented.
session | K. Precision and New Physics |
---|