Welcome to Barcelona
Welcome to Barcelona
We analyze the modifications that a dense nuclear medium induces in the Ds(2317)ยฑ and Tcc(3875)ยฑ. In the vacuum, we consider them as isoscalar DK (Dbar Kbar) and DD (Dbar Dbar) S-wave bound states, which are dynamically generated from effective interactions that lead to different Weinberg compositeness scenarios. Matter effects are incorporated through the two-meson loop functions, taking...
I will discuss recent advances on the description of lepton-nucleus interactions in the energy region relevant for oscillation experiments. Various methods employing Quantum Monte Carlo techniques have been employed to derive the presented results.
The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, which is being built close to GSI Helmholtzzentrum Darmstadt, makes significant progress in its mission to provide unique opportunities for a rich and multidisciplinary research program. The mission of FAIR comprises the investigation of QCD-Matter and QCD-Phase Diagram at highest baryon density; nuclear structure and nuclear...
In this contribution, I will present a short, personal overview of nuclear Density Functional Theory (DFT). Two specific aspects will be emphasised. Compared to so-called ab initio approaches, DFT is more phenomenological; however, it can be applied throughout the whole isotope chart and account for many observables that
ab initio cannot handle so far like, for instance, the excited...
The GlueX experiment at Jefferson Lab was specifically designed for precision studies of the light-meson spectrum. A photon beam with energies of up to 12 GeV is directed onto a liquid hydrogen target contained within a hermetic detector with near-complete neutral and charged particle coverage. Linear polarization of the photon beam with a maximum around 9 GeV provides additional information...
It is important to obtain information on YN and YY interaction from study of structure of hypernuclei. For this purpose, I have been studying $\Lambda$ hypernuclei for $\Lambda N$ interaction. In this conference, I will report of structure of $\Xi$ hypernucei and $\Xi N$ interactions.
Neutron stars (NSs) are unique laboratories to probe matter in extreme conditions that
cannot be currently reproduced on Earth. Nuclear physics experiments, in tandem
with astrophysical observations, can give valuable insight into the properties
of dense matter encountered in these stellar objects.
The connection between astrophysical observations and microphysical properties of
NSs...
We are all individuals made up of a unique combination of characteristics and experiences, some of which assist us in our physics careers while others make us feel we donโt belong. In this talk I will use my own journey to highlight issues of diversity and inclusion. How, as a woman physicist, I went from understanding how my personal experiences were actually part of a wider picture of gender...
Unitarity of the Cabibbo-Kobayashi-Maskawa quark mixing matrix is a testable prediction of the Standard Model. The most precise constraint, the Cabibbo unitarity constraint, is currently provided by a combination of superallowed nuclear beta decays and kaon decays, testing SM self consistency at the 0.01% level. Recent improvements in the theory of SM radiative corrections to beta decays...
The BESIII experiment at the electron-positron collider BEPCII in Beijing (China) is successfully operating since 2008 and has collected large data samples in the tau-mass region, including the worldโs largest data samples at the J/ฯ and ฯ 0 resonances. The recent observations of hyperon polarizations at BESIII opens a new window for testing CP violation, as it allows for simultaneous...
Transverse momentum moments (TMMs) are defined as weighted integrals of transverse momentum distributions. They provide integral information about the hadron structure, such as average momentum, width, etc; and could be determined from the distributions and directly from the data. I review the theory and phenomenology of TMMs based on the recent N4LL analysis of Drell-Yan data.
The transport and spectral properties of heavy quarkonia in hot QCD matter are a central ingredient to describe their observables in high-energy heavy-ion collisions. We review recent activity in evaluating these properties in a nonperturbative quantum many-body approach where the basic two-body interaction kernel is constrained by quantities that can be computed with good precision in thermal...
Quantum many-body systems often stabilize by creating non-uniformity in them. Clustering in nuclei is one of good examples. Since the discovery of ฮฑ-decay and later prediction/observation of the Hoyle state in 12 C, nuclear physicists have investigated mechanism how clusters occur in nuclei and how they play roles in synthesis of heavier elements. So far the scope of cluster research has been...
Quantum Chromodynamics (QCD) predicts a deconfined state of quarks and gluons: Quark Gluon Plasma (QGP). Studying the transport and medium properties of QGP greatly deepens our understanding of the strong interaction. Heavy quarks created from the hard scatterings in heavy-ion collisions are golden probes of the medium, by providing insights into in-medium energy loss, diffusion behaviors and...
Driven by the need to have a QCD-based determination of the hadron spectrum, nuclear structure, and electroweak decays, the lattice QCD community has been making impressive progress towards studying two- and three-hadron scattering amplitudes. Being defined in a finite-Euclidean spacetime, the notion of scattering is absent within lattice QCD, and conceptually such studies are naively...
Recent advancements have facilitated the approximate computation of light-cone correlation functions in lattice QCD through the evaluation of their Euclidean counterparts. In this presentation, we will provide a brief overview of these significant developments that have direct implications for Generalized Parton Distributions.
We will discuss why studying exotics in heavy ion collision is interesting. For that purpose, we will discuss their structures within the quark model and meson exchange model. We will also link the results to their production in heavy ion collision. We will specifically look at the X(3872) and T$_{cc}$.
Research on hypernuclei plays an essential role in answering how the hierarchy of nuclei is constructed from quarks. We are going to review the recent achievements in hypernuclear programs in J-PARC. One of the recent achievements is the realization of an accurate hyperon-nucleon scattering experiment. The differential cross sections of the ฮฃ+p, ฮฃโp elastic scatterings and ฮฃโp โ ฮn inelastic...
Genuine three-body forces in nuclear physics absorb all the effects which can not be described by two-body interactions in three-, four-.. body systems and are necessary ingredients in the description of nuclear binding energies. For hyperons and nucleons such forces have never been measured directly since scattering experiments are difficult with unstable hyperons and since the data-base of...
The scientific foundation for the Electron-Ion Collider (EIC) was built over two decades. The EIC will be sited at Brookhaven National Lab and constructed in partnership with Jefferson Lab. The EIC will have a versatile range of beam energies, polarizations, and ion species, as well as high luminosity, to precisely image quarks, gluons, and their interactions in protons and complex atomic...
The recently discovered abundance of exotic hadrons is rapidly expanding our understanding of the bound states allowed by QCD. However, basic questions about the structure of these new particles remain unanswered. Measurements of these exotic hadrons and their interactions with the QCD medium provides a new avenue to investigate their properties. Additionally, the production of hadrons with...